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Role of Deep Learning–Quantified
Hyperreflective Foci for the Prediction of

Geographic Atrophy Progression
URSULA SCHMIDT-ERFURTH, HRVOJE BOGUNOVIC, CHRISTOPH GRECHENIG, PATRICIA BUI,
MARIA FABIANSKA, SEBASTIAN WALDSTEIN, AND GREGOR S. REITER
� PURPOSE: To quantitatively measure hyperreflective
foci (HRF) during the progression of geographic atrophy
(GA) secondary to age-related macular degeneration
(AMD) using deep learning (DL) and investigate the as-
sociation with local and global growth of GA.
� METHODS: Eyes with GA were prospectively included.
Spectral-domain optical coherence tomography
(SDOCT) and fundus autofluorescence images were ac-
quired every 6 months. A 500-mm-wide junctional zone
adjacent to the GA border was delineated and HRF
were quantified using a validated DL algorithm. HRF
concentrations in progressing and nonprogressing areas,
as well as correlations between HRF quantifications and
global and local GA progression, were assessed.
� RESULTS: A total of 491 SDOCT volumes from 87
eyes of 54 patients were assessed with a median follow-
up of 28 months. Two-thirds of HRF were localized
within a millimeter adjacent to the GA border. HRF con-
centration was positively correlated with GA progression
in unifocal and multifocal GA (allP< .001) and de novo
GA development (P [ .037). Local progression speed
correlated positively with local increase of HRF (P value
range <.001-.004). Global progression speed, however,
did not correlate with HRF concentrations (P > .05).
Changes in HRF over time did not have an impact on
the growth in GA (P > .05).
� CONCLUSION: Advanced artificial intelligence (AI)
methods in high-resolution retinal imaging allows to iden-
tify, localize, and quantify biomarkers such as HRF.
Increased HRF concentrations in the junctional zone
and future macular atrophy may represent progressive
migration and loss of retinal pigment epithelium. AI-
based biomarker monitoring may pave the way into the
era of individualized risk assessment and objective
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A
RTIFICIAL INTELLIGENCE (AI) HAS ARRIVED IN MED-

icine and its implementation into the clinical
world is likely to revolutionize daily patient care.

Beyond fields such as radiology, dermatology, and pathol-
ogy, ophthalmology is expected to benefit most strikingly
of AI owing to its focus on image-based diagnostics.1

Together with optical coherence tomography (OCT) im-
aging,2 another technological achievement in ophthal-
mology, AI can reach its full potential and real-time
objective and individualized medicine can potentially be
provided. The highly organized structures of the retina
are an ideal target for implementing AI to support physi-
cians in their work on a daily basis.3

Age-related macular degeneration (AMD) affects almost
200 million people worldwide in 2020, which will increase
to 288million in 2040.4Clinical classificationofAMDdiffer-
entiates an early and intermediate form, based on the pres-
ence of drusen and pigmentary alterations, from 2 late
stages, neovascular AMD and geographic atrophy (GA),
also called atrophic AMD.5 In neovascular AMD, new
choroidal or retinal vessels develop with clinically present
exudation and a rapid decline in visual function.6,7 GA, on
the other hand, is characterized by progressive alteration of
photoreceptors and retinal pigment epithelium (RPE) cells,
as well as alterations in the choriocapillaris.8,9 Contrary to
neovascular AMD, GA progresses slowly but individually
in an unpredictable manner. No medication has yet been
clinically approved for the treatment of this form of late-
stage disease.10,11 With innovations in multimodal imaging
techniques and in particular OCT, several structural risk fac-
tors for the progression from intermediate to late AMDwere
identified.12–15 Using machine learning (ML) and including
a variety of these risk markers, it is possible to create disease-
prognostic ‘‘risk signatures’’ for individual disease progression
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with a notable difference between the ‘‘risk signature’’ for
neovascular AMD and GA.16–18 An important feature that
is abundantly present in the progression to GA is
hyperreflective foci (HRF), a subclinical feature, which can
be detected by OCT imaging in high-resolution im-
ages.16,19–21 During disease progression RPE cells overlying
a druse either go into apoptosis or migrate into the retina,
which results in the formation of HRF and the subsequent
collapse of the druse, which cannot sustain its integrity
without further RPE functionality.13,22,23 The collapse of
the druse, which starts with the dysmorphia of RPE cells
and the subsequent development ofGA, is termed the drusen
life cycle.13,24–26HRF seen onOCThave been demonstrated
to be consistent with hyperpigmentary alterations on color
fundus photography.27,28 It is therefore understandable that
early classification of intermediate AMD based on color
fundus photography mostly relied on the presence and size
of drusen and hyperpigmentary alterations, which were also
used for individual risk assessment.29

While RPE migration alone does not induce vision loss,
expanding atrophic lesions do, and disease progression
concomitant with visual loss is unhalted. The search for
reliable morphologic risk factors that identify and predict
lesion growth in GA is therefore actively promoted by
many investigators using multimodal approaches.30,31 In
the not-yet-atrophic area adjacent to the edge of the lesion,
called the junctional zone, RPE cells show dysmorphia and
loss of intracellular fluorophores with already reduced RPE-
derived quantitative autofluorescence.24,32–35 ‘‘Junctional
zone’’ is a term that was defined differently in the current
literature. Some studies defined the junctional zone on
structural alteration (ie, ellipsoid zone loss on OCT),
whereas other studies used 1 or several fixed margins
around the GA lesion.33,36–38 The continuous process of
RPE degeneration at the junctional zone followed by
migration of RPE cells into the overlaying retina allows a
novel quantitative biomarker-based assessment using
high-resolution 3-dimensional OCT imaging.

Deep learning (DL) is a path of AI that relies on multilay-
ered neural network algorithms that allow the algorithm to
learn to extract specific morphologic features on its own.
Although DL has to be fed with relatively more data than
traditional machine learning, its strength lies in the ability
to extract signals that are often invisible to the human
expert.3 Applying DL to retinal image analysis (eg, in
OCT), the algorithm requires a dataset of annotated objects,
which can be HRF or any other biomarker of clinical rele-
vance. Subsequently, the trained algorithm provides an auto-
mated extraction of these image features and can be applied
on a new image dataset. To investigate the quantitative
impact of HRF on the progression of GA secondary to
AMD, a previously built DL model was used to localize and
measure the amount of HRF in 3-dimensional OCT im-
ages.39 For this study,we investigate the relationship between
spatiotemporal HRF quantification and GA lesion growth to
identify the role of HRF in global and local GA progression.
258 AMERICAN JOURNAL OF
METHODS

� STUDY DESIGN: Patients with geographic atrophy (GA)
secondary to AMD aged 50 years and over were included
in a reported10,33,40–46 prospective observational cohort
study after giving written informed consent. The study was
approved by the Ethics Committee of the Medical
University of Vienna and adhered to Good Clinical
Practice guidelines and the Declaration of Helsinki.
Patients with both unifocal and multifocal GA lesions
were included in the study. Patients with any signs of
neovascular AMD or who had been treated with anti–
vascular endothelial growth factor were excluded. Spectral-
domain OCT (SDOCT) and fundus autofluorescence
(FAF) images were acquired using a Spectralis HRAþOCT
(Heidelberg Engineering, Heidelberg, Germany).

� IMAGING PROTOCOL: Imaging was performed prospec-
tively using a standardized protocol every 6 months. At least
3 consecutive visits had to be available for inclusion in the
analysis. For SDOCT scans, an OCT volume of the central
203 208 centered on the fovea was acquired with a resolu-
tion of 1024 3 49 (A-scans 3 B-scans) using a Spectralis
HRAþOCT device (Heidelberg Engineering). If not
detected by the system, the fovea was manually centered at
the baseline visit. The built-in follow-up mode was used
thereafter to reacquire follow-up scans. A registered 30-
degree infrared image with a resolution of 7683 768 pixels
was acquired simultaneously with the OCT via the scanning
laser ophthalmoscopymode of the instrument.Thirty-degree
FAF images (7683 768 pixels) were acquired after OCT im-
aging in the same session after pupil dilationwith 0.5% tropi-
camide and 2.5% phenylephrine to at least 6 mm diameter.

� IMAGE PROCESSING AND BIOMARKER QUANTIFICA-
TION: HRF voxels were detected and segmented in a 3-
dimensional (3D) OCT volume using a custom-built and
validated DL algorithm based on a residual U-NET seman-
tic segmentation architecture that was trained on a dataset
consisting of images from patients with AMD, diabetic
macular edema, and retinal vein occlusion. The algorithm
has been validated and described in detail.39

The bright appearance of retinal vessels on OCT images
may result in false-positive identification of HRF at vessel
sites. The following procedure was implemented to filter
out these false-positives to allow precise point-to-point
assessment. After detection on infrared images, retinal ves-
sels were transferred to the OCT scan using a custom-built
registration algorithm.47 To account for minor registration
errors, the retinal vessels were enhanced by one hundredth
of the 30-degree infrared image’s side. A component
filtering algorithm was applied to allow correct identifica-
tion of retinal vessels and false-positive vessels were
removed. All HRF colocalizing with retinal vessels on
the en face image were subsequently removed, leaving
only true HRF for evaluation (Figure 1). Each pixel of
AUGUST 2020OPHTHALMOLOGY



FIGURE 1. Retinal vessel identification and removal of false-positive hyperreflective foci (HRF) signals. Top left: Identification of
retinal vessels (red) on the infrared image and thickening of the vessels (yellow) by 1% of the image’s height. Top middle: Retinal
vessels after registration to the optical coherence tomography (OCT) image. Top right: Removal of false-positive vessel signals
(red) on the OCT scan. Bottom left: Overlay of retinal vessels (yellow) withHRF (red) before vessel filtering. Bottommiddle: Retinal
vessels (yellow) with overlying HRF (red) after component filtering. Bottom right: Separation of true positive HRF (red to yellow
dashes, depending on each HRF A-scan length) and false-positive HRF signals (blue).
the individual en face HRF thickness map was color-coded
by its size along the OCT A-scan (Figure 2).

GA lesions were delineated by certified graders (C.G.,
P.B.) on FAF images, which is to date the standard proced-
ure for evaluating GA growth approved by the U.S. Food
and Drug Administration.48 The area of the GA that was
annotated on FAF was then transferred to the OCT using
the registration algorithm.47

A fixed custom junctional zone surrounding the GA
lesion was then defined. This study used a 500-mm-wide
parallel ring around the GA border for the spatial correla-
tion of HRF to the GA border at baseline. Two-
dimensional (2D) and 3D concentrations of HRF were
calculated as the area and volume of pixels covered by
HRF divided by the area of the region of interest (Figure 2).

� STATISTICAL ANALYSIS: Histograms were drawn to
identify the distribution of data. All data were then calcu-
lated as the median (interquartile range [IQR]) if not
normally distributed or mean 6 standard deviation other-
VOL. 216 HYPERREFLECTIVE FOCI IN GA PROG
wise. Distances of HRF from the GA lesion were measured,
including the distance of all individual HRF pixels from the
immediate edge of the GA.
The intra-individual difference in HRF concentration

between the growth area, defined as the difference between
GA areas among 2 consecutive visits and the intact refer-
ence zone of 500 mm, was investigated with a Wilcoxon
signed rank test computed for distribution of differences
of HRF concentration between the corresponding areas.
This was done separately for unifocal and multifocal le-
sions, as well as for the 2D and 3D concentrations of
HRF. De novo GA development in areas with high con-
centrations of HRF were analyzed by comparing 2 regions
of interest: the region where new GA appeared within
6 months and the region where no GA appeared in
6 months. The distributions of differences in HRF concen-
tration were computed separately for 2D and 3D concentra-
tions of HRF as well as for unifocal and multifocal lesions.
Wilcoxon signed rank tests were performed to investigate
whether these distributions were symmetrical around zero.
259RESSION USING DEEP LEARNING



FIGURE 2. Delineated unifocal geographic atrophy (GA) after registration to the optical coherence tomography (OCT) image. A
500-mm-wide junctional zone (gray) was drawn along GA borders. The growth area was defined as the difference in GA extension
between 2 consecutive 6-monthly visits (green). Hyperreflective foci (HRF, red to yellow dashes) were quantified within the junc-
tional zone and color coded depending on the OCT A-scan length of each en face HRF signal.
To calculate the progression of GA in each eye, the GA
area (assessed on FAF images) and the time difference to
the first visit were considered for each consecutive visit. A
linear regression was performed and the progression rate
calculated as the slope of the fitted line. A central area
with a radius of 1 mm around the center of the fovea was
excluded from further analysis to account for the effect that
GA lesions progress slower toward the fovea than the periph-
ery49 (Figure 3). The correlation between global GAprogres-
sion (as assessed on FAF) and 2D and 3DHRF concentration
in the junctional zone was then calculated using Spearman
correlation coefficients. These were calculated for the HRF
concentrations at baseline as well as for the HRF concentra-
tions averaged over the entire follow-up period.

The correlation between local GA progression and HRF
concentrations was assessed by assigning a circular region
outside the atrophic area with a subjectively chosen radius
of 800 mm to each pixel of the GA lesion’s border. The
count and concentration of HRF was assessed and normal-
ized for each single circular region (Figure 4). To quantify
260 AMERICAN JOURNAL OF
local progression, each pixel of the GA rim (border) was
assigned a value corresponding to the distance to the rim
(border) of the GA lesion observed during the next visit.
These values were then normalized (Figure 4). Spearman
correlations were calculated to investigate the association
between local GA growth and HRF counts and concentra-
tions (both 2D and 3D).
Measures of local GA activity and local HRF activity

were introduced to assess the correlation between local
GA development and preceding HRF dynamics. For each
pixel within the GA growth area between 2 visits, local
GA activity was defined as the distance between that pixel
and the rim (border) of the GA lesion observed during the
earlier of the 2 visits under consideration. If a new GA
lesion developed, all of its pixels were assigned a value
corresponding to the radius of a circle with the same area
(Figure 5). To describe HRF dynamics, en face HRF thick-
ness maps were compared for pairs of consecutive visits. If
the comparison was done in a pixel-wise manner, minor
registration errors causing a shift in the position of the
AUGUST 2020OPHTHALMOLOGY



FIGURE 3. Delineation of multifocal geographic atrophy (GA). A 500-mm-wide junctional zone was drawn adjacent to the GA. The
central 1 mm was excluded from analysis to account for the difference in directional progression speed. Hyperreflective foci (HRF)
quantifications (red to yellow dashes) were co-registered to the optical coherence tomography (OCT) image.
same HRF between visits would result in detecting a false
activity in 2 positions: disappearance of the HRF in the first
position and appearance of the HRF in the second position.
This issue was addressed by smoothening both en face
maps: each pixel, instead of presenting HRF length along
the corresponding A-scan, presented a mean of HRF
lengths in the 500 mm 3 500 mm square window centered
at that pixel. Local HRF activity was defined for each pixel
as an absolute difference between the values of correspond-
ing pixels in the thus-defined maps (Figure 6). The groups
of 3 consecutive visits were analyzed. The correlation be-
tween local HRF activity between the first 2 visits and local
GA activity between the second 2 visits was quantified us-
ing Spearman correlation coefficient. The significance
level for all calculations was set to a¼ 0.05. No correction
for multiple testing was performed for this explorative
biomarker identification study.
VOL. 216 HYPERREFLECTIVE FOCI IN GA PROG
RESULTS

� DEMOGRAPHICS: A total of 491 OCT volumes from 87
eyes of 54 patients with GA were included in this analysis.
Median follow-up was 27.67 months (IQR: 14.03). Thirty-
six eyes (41.4%) had unifocal and 51 eyes (58.6%) had
multifocal GA lesions. ThemeanGA lesion size at baseline
was 6.50 6 5.24 mm2. The mean progression of GA was
1.47 6 1.12 mm2/year. The mean age was 74.84 6 8.01
years. Out of 54 patients, 34 (63%) were women. Detailed
demographics separated for unifocal and multifocal GA are
shown in Table 1.

� DISTRIBUTION OF HYPERREFLECTIVE FOCI AT THE
GEOGRAPHIC ATROPHY BORDER: HRF distribution was
found to be in close correlation with the GA border. The
mean distance of HRF from the atrophy border was 860
261RESSION USING DEEP LEARNING



FIGURE 4. Left: Normalization of local geographic atrophy (GA) progression speed based on the amount of novel atrophic signals
(gray). Higher values correspond to faster growth. Right: Concentration of hyperreflective foci (HRF, red to yellow dashes) within an
800-mm circle around each pixel of the GA border (exemplarily demonstrated as the pink circle with the black center dot). The higher
the concentration of HRF in the circle, the higher the value at the GA border.
6 746mm. Around two-thirds of all HRF were situated in a
1-mm junctional zone around theGA lesion. DetailedHRF
distributions for unifocal and multifocal GA are shown in
Table 2.

� HYPERREFLECTIVE FOCI CONCENTRATION IN
GEOGRAPHIC ATROPHY PROGRESSION: Statistically sig-
nificant differences were identified in the HRF concentra-
tion in the growth area compared with the remaining
junctional zone in both unifocal GA (2D: P < .001; 3D:
P < .001) and multifocal GA (2D: P < .001; 3D: P <
.001). The median of 2D HRF concentration difference
for unifocal and multifocal GA was 0.02 (IQR 0.02) and
0.01 (IQR 0.02), respectively. The 3D HRF concentration
difference for unifocal and multifocal GA was 0.20 (IQR
0.29) and 0.13 (IQR 0.24), respectively (Figure 7).

� HYPERREFLECTIVE FOCI CONCENTRATION PRECEDING
GEOGRAPHIC ATROPHY DEVELOPMENT: A statistically
significant difference was found in the 2D HRF concentra-
tion between areas of GA development within the next
6 months and the area without new GA development
within the next 6 months (P ¼ .037). The difference was
slightly above zero (median ¼ 0.005, IQR: 0.043), indi-
cating a higher concentration of 2D HRF in the areas
next to develop GA. No statistical significance was found
in the 3D HRF concentration between future GA and
non-GA areas (P ¼ .058) (Figure 8).
� CORRELATION BETWEEN GEOGRAPHIC ATROPHY PRO-
GRESSION AND HYPERREFLECTIVE FOCI CONCENTRA-
262 AMERICAN JOURNAL OF
TION: Local progression of GA and local HRF
concentrations as well as local HRF counts were assessed
in relation to the GA lesion borders. Calculating Spearman
correlation between the local GA progression and HRF
concentration as well as HRF counts in unifocal GA, a sig-
nificant positive correlation was found in 2D and 3D HRF
concentrations (both P < .001, R ¼ 0.09 [IQR: 0.21] and
R ¼ 0.08 [IQR: 0.2], respectively), as well as HRF counts
(P < .001, R ¼ 0.08 [IQR: 0.25] and P ¼ .003, R ¼ 0.06
[IQR: 0.18], respectively, Figure 9). Calculating Spearman
correlations for multifocal GA, a significant average posi-
tive correlation was found between the local GA growth
and 2D HRF concentrations and HRF counts (P ¼ .004,
R ¼ 0.06 [IQR: 0.2] and P ¼ .002, R ¼ 0.06 [IQR: 0.25],
respectively, Figure 9). No association was found in multi-
focal GA investigating the correlation between 3D HRF
concentrations and counts with local GA progression
(both P > .05, Figure 9).
Mean global GA progression was 1.476 1.12 mm2/year.

Using the baseline 2D and 3D HRF concentrations, no sig-
nificant correlation was found between the global GA pro-
gression and HRF concentrations in unifocal or multifocal
lesions (all P > .05). When investigating the 2D and 3D
HRF concentrations using the averaged HRF quantifica-
tions, no significant correlation was found between the
global GA progression and the averaged HRF concentra-
tions (all P > .05).

� HYPERREFLECTIVE FOCI DYNAMICS BEFORE
GEOGRAPHIC ATROPHY ACTIVITY: Local HRF dynamics
owing to length changes of HRF in the OCT A-scans
AUGUST 2020OPHTHALMOLOGY



FIGURE 5. Assessment of local geographic atrophy (GA) speed and the normalization of de novo GA lesions. Left: The difference
between 2 consecutive 6-monthly visits (first visit, red; second visit, purple) was defined as the growth area. Right: The growth area of
a GA lesion was normalized based on the amount of pixel difference between 2 consecutive 6-monthly visits. Any de novo GA lesion
was normalized and all of its pixels were assigned a value corresponding to the radius of a circle with the same area.
were assessed and an association with subsequent local GA
activity after 6 months was investigated. No significant cor-
relation was found between HRF dynamics and subsequent
GA activity in either unifocal or multifocal GA lesions
(both P > .05).
DISCUSSION

AI IS CURRENTLY SUCCESSFULLY IMPLEMENTED IN RETINAL

diagnostics: It is now possible to correctly quantify retinal
biomarkers on various imaging modalities and provide
these tools for research and, eventually, individualized pa-
tient care.3 Large digital datasets can be analyzed by auto-
mated algorithms in a fraction of the time that a human
reader or retinal expert would require. This advantage on
a large analysis scale offers a deeper understanding of dis-
eases.1 In macular diseases and pathologic aging, particu-
larly AMD, various imaging biomarkers can be defined
and, most importantly, quantified for investigation of their
predictive values in disease progression. Apart from robust
retinal layer segmentation and the precise spatial differen-
tiation and quantification of retinal fluid compartments,50–
52 more refined biomarkers on a subclinical level, such as
ellipsoid zone thickness or HRF, and the interaction of
these biomarkers can now be explored to assess individual
risk in disease progression.16,53–56 The possibilities in AI
are continuously expanding and novel, clinically
unknown biomarkers can be identified using unsupervised
VOL. 216 HYPERREFLECTIVE FOCI IN GA PROG
learning. The latter lets the AI algorithm detect retinal
markers on its own and evaluates them for the prediction
of disease progression, which widely opens the spectrum
of pathologic feature detection.57

In this study, a deep learning algorithm that allows
spatial and temporal quantification of HRF in late AMD,
showing a statistically significant association between the
spatial presence of HRF and the local growth of GA, was
applied. The majority of HRF derive from the junctional
zone in close proximity to the GA lesion border. The accu-
mulation of HRF predicts local progression of the atrophic
lesion and indicates where and whether the atrophic lesion
will expand. Contrary to the local prediction, a global pre-
diction of GA progression was not possible. HRF density
increased in areas of future multifocal GA lesions. Howev-
er, no association was found between the dynamics of HRF
before GA progression and the new development of GA
lesions.
The junctional zone surrounding a GA lesion is prone to

become atrophic during the natural course of disease pro-
gression.25 To date, no drug slowing or inhibiting an atro-
phic lesion’s growth has been approved for the treatment
of GA secondary to AMD.11 Correctly identifying patients
and lesions that are at high risk of progression is therefore of
great interest to plan therapeutic studies tailored to pa-
tients’ disease stage. RPE in AMD is characterized by loss
of intracellular granules and cytoskeleton derangements.58

During disease progression of non-neovascular AMD, loss
of RPE integrity is already detectable by the reduced quan-
titative autofluorescence in eyes with AMD compared with
263RESSION USING DEEP LEARNING



FIGURE 6. Dynamics of hyperreflective foci (HRF). Optical coherence tomography (OCT)A-scan length was defined for eachHRF
and the difference between 2 consecutive 6-monthly visits was assessed under the consideration of minor registration errors within
500-mm-sided squares. The amount of HRF dynamics within each square was then normalized.
healthy control eyes.59 Above drusen the break-up of RPE
can be visualized using exploratory polarization-sensitive
OCT.60 A close correlation between the size of a druse
and alterations in the RPE can also be detected using this
experimental technique,61 and at the same time the segre-
gation of HRF from the RPE can be visualized and the po-
larization of HRF indicates the origin from the RPE, which
confirms SDOCT and histopathologic findings.13,35,61 A
correlation between the size of a drusenoid pigment epithe-
lium detachment and a higher frequency of overlying
hyperpigmentary alterations was described in the AREDS2
study, in which color fundus photography was used.62 Using
automated quantification of HRF on routine SDOCT, a
correlation between HRF and the progression to late
264 AMERICAN JOURNAL OF
AMD, in particular atrophic AMD, was found.21 Using
multimodal imaging in combination with novel analytical
tools from AI, it becomes evident that AMD follows the
pathognomonic pathway of continuous RPE dysmorphia
followed by intraretinal migration with progressive death
of RPE cells and overlying photoreceptors.63

During disease progression in non-neovascular late
AMD, the nonatrophic junctional zone in GA presents
various alterations in histology, such as photoreceptor
shortening, dysmorphic RPE, and a dyslaminated outer nu-
clear layer.32,64 A hyporeflective wedge becomes visible on
OCT that corresponds to a Henle fiber layer without
cellular infiltration.32,65 Müller cells irrupt into the sub-
RPE space and might play an important role during the
AUGUST 2020OPHTHALMOLOGY



TABLE 1. Demographic Summary Collected From 87 Study Eyes

Demographics Any GA Unifocal GA Multifocal GA

Eyes, n (%) 87 (100) 36 (41.4) 51 (58.6)

Age (years), mean (SD) 74.84 (8.01) 76.11 (8.18) 74.02 (7.88)

Female sex, n (%) eyes 56 (64.4) 25 (69.4) 31 (60.8)

Baseline GA area (mm2) 6.50 (5.24) 7.34 (5.90) 5.90 (4.62)

Follow-up period (months), median (IQR) 27.67 (14.03) 28.67 (6.95) 25.87 (18.43)

GA ¼ geographic atrophy; IQR ¼ interquartile range.

TABLE 2. Distribution of Hyperreflective Foci in Relation to the Geographic Atrophy Lesion Border

Junctional Zone Ring (mm)

Any GA Unifocal GA Multifocal GA

% per Ring Cumulative % % per Ring Cumulative % % per Ring Cumulative %

1-250 25 25 26 26 25 25

251-500 16 41 14 39 17 42

501-750 14 55 12 51 15 57

751-1000 10 65 12 63 10 66

1001-1500 14 79 17 79 13 79

1501-2000 12 91 11 91 12 91

2001-2500 6 97 6 97 6 97

2501- 3 100 4 100 3 100

GA ¼ geographic atrophy.
enlargement of GA with the concurrent formation of outer
retinal tubulations.66,67 Müller cell contribution to HRF
features have been described as well.68,69 The damage to
the RPE in the junctional zone in GA is already remarkable
with reduced intracellular autofluorescence alone.34,35 A
delineation by an adjacent hyperautofluorescent rim might
indicate an increase in cellular RPE damage70; however,
the general quantitative autofluorescence in the junctional
zone is already decreased in patients with solitary GA,33

supporting the pathomechanism of continuous loss of
RPE and its fluorophores during disease progression.58,71

The formation and migration of HRF into the inner retinal
layers accompanies continuous RPE loss.13 In this study,
this concomitant process can be seen on OCT with the
accumulation of HRF close to the GA border (mean
HRF distance: 860 6 746 mm), with the majority of HRF
present within the millimeter adjacent to the GA border
(approximately 65%), as seen by automated counting.
Furthermore, not only were HRF abundantly present close
to the GA border but the concentration of HRF was also
higher in future GA lesion areas than in nongrowing areas
within a 500-mm junctional zone (P< .001 for both 2D and
3D HRF concentration). The 2D concentration of HRF
was also significantly higher in areas where a new GA
lesion will develop at least 6 months later compared with
VOL. 216 HYPERREFLECTIVE FOCI IN GA PROG
the area where no GA occurs (P ¼ .037). However, only
2D concentrations of HRF reached significance, while 3D
concentrations of HRF were close to being significantly
different between these respective areas (P ¼ .058). This
is explained by the difficulty in monitoring individual
HRF by SDOCT with a distance between B-scans larger
than the HRF. Nonetheless, with a significant difference
in 2D concentration (median ¼ 0.005) and a trend toward
higher 3D concentrations of HRF (median ¼ 0.032), this
hypothesis seems valid.
Individual regression slopes were calculated first to

investigate the association of HRF with GA progression.
The mean GA growth in this study was 1.47 6
1.12 mm2/year, which accords well with the litera-
ture.30,31,72,73 However, no correlation was found between
the 2D or 3D HRF concentrations and the global GA pro-
gression in either unifocal or multifocal lesions in this
study. When assessing local progression speed with normal-
ization of the GA border based on the 6-monthly growth
speed and HRF concentrations, a significant positive corre-
lation between the 2D and 3D HRF concentrations and
HRF counts in unifocal GA was found (all P< .001, except
3D count P¼ .003). This result indicates that unifocal GA
progresses faster with higher concentrations of HRF near
the border of atrophy. In multifocal GA, a significant
265RESSION USING DEEP LEARNING



FIGURE 7. Distribution of differences between 2-dimensional (2D) (left pair) and 3-dimensional (3D) (right pair) concentrations of
hyperreflective foci (HRF) within the 500-mm junctional zone around the geographic atrophy (GA) lesion. The significance in dif-
ferences between future growth areas and non-growth areas was calculated usingWilcoxon signed rank tests. All calculations resulted
in a statistically significant difference with, on average, higher HRF concentration in future growth areas (all P < .001).

FIGURE 8. Distribution of differences between 2-dimensional
(2D) (left) and 3-dimensional (3D) (right) concentrations of
hyperreflective foci (HRF) within de novo geographic atrophy
areas in the next 6 months. A significantly higher 2D HRF con-
centration was found in areas that will develop GA in 6 months
or earlier (P[ .037). No significant difference was found with
3D HRF concentrations (P > .05).
positive correlation was only found between the 2D HRF
concentrations and counts with GA growth (P ¼ .004
and P ¼ .002, respectively). These results indicate faster
progression with higher HRF concentration, assuming
that HRF are already present at the time of assessment.
The stated correlation coefficients were not very high,
but were statistically significant even in a relatively small
cohort, which indicates that HRF quantifications indeed
have a relevant association with local GA growth. Howev-
er, HRF are not the only imaging biomarker associated with
GA growth, and the interactions of all related biomarkers
remains to be assessed in a larger dataset. In general,
distinct and pathophysiologically evident biomarkers
such as HRF are easy to measure by AI tools and would
therefore offer good utility in clinical practice. When
assessing another dimension, HRF dynamics over time,
and the association between HRF dynamics with GA pro-
gression speed, no such correlation was found (P > .05 for
both unifocal and multifocal GA). In a spatial correlation,
HRF are therefore close to the border of atrophy and indi-
cators of RPE cell death in the junctional zone. Preceding
GA progression in a temporal dimension, HRF might
already be present and the local dynamics of HRF do not
affect overall GA progression.

The advantages of this study lie in the quantification of
HRF using a validated DL algorithm39 and the automated
registration of different retinal imaging modalities such as
SDOCT and FAF, which allows precise intra-individual
monitoring of subclinical biomarkers such as HRF with
high agreement.47,74 Another benefit is the long and stan-
dardized follow-up of over 27 months (IQR: 14.03), which
allows precise detection of GA growth as well as de novo
266 AMERICAN JOURNAL OF
GA development. We showed that the majority of HRF
accumulate in the immediate area around the GA lesion.
However, very distant HRF might have not been detected
owing to the 20-degree OCT imaging protocol and this has
to be accepted as a limitation. This study focused on the
AUGUST 2020OPHTHALMOLOGY



FIGURE 9. Distribution of Spearman correlation between local geographic atrophy (GA) progression and hyperreflective foci (HRF)
concentrations and counts for unifocal (blue) and multifocal (orange) lesions. Top left pair: Correlations of local GA progression and
2-dimensional (2D) HRF concentration. Top right pair: Correlations of local GA progression and 3-dimensional (3D) HRF concen-
trations. Bottom left pair: Correlations of local GA progression and 2DHRF counts. Bottom right pair: Correlations of local GA pro-
gression and 3DHRF counts. All mean correlations reached statistical significance, except 2D and 3DHRF counts in multifocal GA.
quantification of HRF and investigation of HRF as a predic-
tive biomarker in GA. Other predictive OCT findings that
may accelerate global and local GA progression such as
subretinal drusenoid deposits can also be found at the
same time.75 Owing to the exploratory nature of the study,
all available eyes were included in our analysis without ac-
counting for within-subjects factors. As part of future work,
the interactions with other imaging biomarkers and corre-
lations between fellow eyes will be accounted for in a larger
dataset. Another limitation of this study is the 6-monthly
image acquisition, as subtler changes might have been
detectable with more frequent study visits, a higher number
of included eyes, or denser OCT volume scans. However, as
GA progression is slow, the focus of this study was set on
prospective longitudinal data with appropriate follow-up
using a deep learning algorithm validated for patients
with AMD, diabetic macular edema, and retinal vein oc-
clusion in a solid manner.

In summary, applying a deep learning algorithm for HRF
quantification to a standardized clinical GA population, we
VOL. 216 HYPERREFLECTIVE FOCI IN GA PROG
could demonstrate that HRF are more frequent close to the
active border of a lesion. Not only are the concentrations of
HRF higher in areas of future GA progression, but HRF
accumulation is also higher in areas with future de novo
GA development. Investigating global and local progres-
sion speed, no association of HRF with global GA progres-
sion was found; however, local progression speed of GAwas
on average positively correlated with HRF quantifications,
indicating faster progression with higher HRF presenta-
tion. Through quantifications of HRF, areas with irrevers-
ible RPE alterations can be identified and the association
with disease progression provides evidence of virulent
RPE death in AMD. AI provides a valuable tool for identi-
fying and correctly quantifying even subclinical retinal bio-
markers. New approaches such as unsupervised learning are
expected to open the horizon to novel biomarker detection
not visible to the physician’s eye and provide a fast, reli-
able, and inexpensive approach to individualized
patient care with objective decision-making and clear
guidance.
267RESSION USING DEEP LEARNING
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