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Purpose: The purpose of this study was to develop a robust and general purpose
artificial intelligence (AI) system that allows the identification of retinal optical
coherence tomography (OCT) volumes with pathomorphological manifesta-
tions not present in normal eyes in screening programs and large retrospective
studies.

Methods: An unsupervised anomaly detection deep learning approach for the screen-
ing of retinal OCTs with any pathomorphological manifestations via Teacher-Student
knowledge distillation is developed. The system is trained with only normal cases
without any additional manual labeling. At test time, it scores how anomalous a
sample is and produces localized anomaly maps with regions of interest in a B-scan.
Fovea-centered OCT scans acquired with Spectralis (Heidelberg Engineering) were
considered. A total of 3358 patients were used for development and testing. The
detection performance was evaluated in a large data cohort with different patholo-
gies including diabetic macular edema (DME) and the multiple stages of age-related
macular degeneration (AMD) and on external public datasets with various disease
biomarkers.

Results: The volume-wise anomaly detection receiver operating characteristic (ROC)
area under the curve (AUC) was 0.94 ± 0.05 in the test set. Pathological B-scan
detection on external datasets varied between 0.81 and 0.87 AUC. Qualitatively, the
derived anomaly maps pointed toward diagnostically relevant regions. The behavior of
the system across the datasets was similar and consistent.

Conclusions:Anomaly detection constitutes a valid complement to supervised systems
aimed at improving the success of vision preservation and eye care, and is an important
step toward more efficient and generalizable screening tools.

Translational Relevance: Deep learning approaches can enable an automated and
objective screening of a wide range of pathological retinal conditions that deviate from
normal appearance.

Introduction

The number of patients with vision-related diseases
globally has been increasing in the past decades
as a consequence of changes in lifestyle and an
increase in average life expectancy, with early diagno-
sis and adequate follow-up being pivotal for reducing
morbidity.1–9 For that, patients are first imaged via
color fundus photography (CFP) or optical coherence

tomography (OCT) and the resulting images are then
qualitatively assessed by retinal specialists. This screen-
ing effort places a strain on healthcare systems by
increasing the workload of ophthalmology special-
ists, and escalating costs associated with traditional
diagnostic procedures.

OCT, in particular, has become the gold-standard
imaging modality for vision-related diagnoses.10–12
It offers a fast noninvasive, high-resolution cross-
sectional imaging of retinal structures, enabling quanti-
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tative assessment of relevant biomarkers such as
retinal layer thickness and fluid volume. However,
the volumetric nature of OCT further increases the
burden of manual assessment. Because of this, there
has been an increasing interest in integrating artificial
intelligence (AI), namely deep learning (DL) methods,
in the clinical practice for automated screening and
diagnosis.13–16

Although several methods, namely convolutional
neural network (CNN)-based approaches, have already
been developed for clinically relevant tasks, includ-
ing OCT volume-wise classification, retinal layer delin-
eation, and specific biomarker detection and classi-
fication,17–26 the translation of these systems to
practice is still limited. One of the reasons is that
the performance of AI systems tends to drop signif-
icantly when exposed to data outside their train-
ing domain, while remaining overconfident of their
prediction. This is particularly true when handling
cases with pathologies outside their training cohort.
For this case, a solution would be to collect and
curate large datasets for all known diseases, but of
course the cost associated with creating such datasets
is prohibitive. A viable alternative is thus to handle
the problem as an unsupervised anomaly detection
task, that is, identifying rare or unusual patterns in
the data without relying on labeled examples, using
instead intrinsic properties like statistical outliers or
deviations from learned norms. In the context of
retinal OCT screening, this means detecting abnormal
retinal structures or pathologies by training models on
normal OCT scans, and flagging scans with morpholo-
gies that deviate from this normal baseline. Such
approaches enable more general-purpose and robust
models capable of identifying a wide range of abnor-
malities, at the cost of not being tailored to classify
specific diseases. In addition, AI methods tend to
behave like black-boxes, not providing a clear expla-
nation on why a given decision was made. Indeed,
robustness (model accuracy, reliability, and repro-
ducibility) and transparency (in particular explainabil-
ity) are two corner stones of trustworthy AI,27,28 that
is, AI that is legally compliant, ethically adherent,
and socio-technically robust. Having such trustworthy
systems is essential for their adoption in real-world
applications.

The goal of this paper is to develop a robust and
trustworthy unsupervised anomaly detection method
for retinal OCT capable of identifying cases with
abnormal retinal structures without relying on labeled
pathological examples. The proposed system can
automatically detect OCTs with pathomorphological
manifestations, while additionally providing a map
showing the location of the identified anomaly.

Methods

In this work, we approach the issues of model
robustness and transparency in the context of
automatic retinal OCT screening via the unsupervised
anomaly detection paradigm, that is, automatically
detecting cases with pathomorphological manifesta-
tions without the need for labeling or the presence of
such cases in the training data. Specifically, the goal of
the system is to learn meaningful representations of
healthy cases, and then measure deviations from this
expected normality. We thus handle the screening task
as an out-of-distribution (OOD) detection problem,
that is, the system automatically identifies out-of-
distribution samples without any prior knowledge of
the characteristics of the anomalies.29–33 Specifically,
we utilize a knowledge distillation (KD)-based DL
approach34 that identifies pathological manifestations
outside its training cohort of healthy cases by assign-
ing each sample an anomaly score. The approach also
has an inherent explainability, producing maps that
pinpoint the location of the anomaly. We validate
the system by evaluating its performance at detecting
anomalous cases at both volume and B-scan levels, as
well as by assessing the association of the predicted
scores with disease severity.

Data Collection and Annotation

In-House Dataset
Our method was developed and evaluated using

baseline, treatment-naïve, OCT scans from different
clinical studies available at theDepartment of Ophthal-
mology of the Medical University of Vienna. All the
scans were acquired with the SPECTRALIS device
(Heidelberg Engineering, Germany) and were of suffi-
cient quality for clinical trial inclusion. Each volumetric
scan was assigned to an exclusive class (i) normal, (ii)
intermediate AMD (iAMD), (iii) neovascular AMD
(nAMD), (iv) geographic atrophy (GA), (v) diabetic
macular edema (DME), (vi) Stargardt disease, (vii)
retinal vein occlusion (RVO), or (viii) central serous
chorioretinopathy (CSC) based on the inclusion crite-
ria of each of the studies that compose these data
subcohorts. Scans were considered normal whenever
there was a lack of pathomorpholigical manifesta-
tions associated with a retinal disease. The dataset is
composed of 3247 volumes/eyes from 2713 patients,
and we only considered the 5 mm2 region around the
fovea. The axial resolution of the scans is 3.9 μm and
the number of B-scans is in the range of 25 to 261.
There are 397 normal and 2850 non-normal volumes.
This split was performed study-wise to minimize
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Table. Number of Eyes/Volumes Per Disease in the In-House Dataset Used for Training and Testing the Anomaly
Detection System

Class Normal iAMD nAMD GA DME Stargardt Disease RVO CSC Normal Non-Normal

Train 279 0 0 0 0 0 0 0 279 0
Test 118 516 738 380 598 130 475 13 118 2 850

similarities between the development and evaluation
datasets.

All patients gave informed consent prior to inclu-
sion in the respective multicenter clinical trials.
Both the respective clinical studies as well as this
analysis adhered to the tenets of the Declaration
of Helsinki and the standards of Good Scientific
Practice of the Medical University of Vienna. This
study was approved by the Ethics Committee of
the Medical University of Vienna, Vienna, Austria
(EK 1246/2016).

External Public Datasets
We evaluated the abnormal B-scan detection

performance and the association of the system
response with disease severity on the training cases
acquired with the SPECTRALIS device from the
public RETOUCH dataset.35 We considered all 24
OCT volumes from 12 eyes/patients with nAMD
and 12 eye/patients with RVO acquired with the
SPECTRALIS device. Each volume had 49 B-scans
with 512 × 496 pixels covering a macular area of
6 mm2 with an axial resolution of 3.9 μm. The
pathological manifestations of these treatment-
naive patients are primarily related to the presence
of exudation and fluid. Each volume has manual
annotations for intraretinal fluid (IRF), subreti-
nal fluid (SRF), and pigment epithelial detachment
(PED).

We complementarily evaluate abnormal B-scan
detection on the test set of the publicly available
Kermany dataset.36 The test set contains 1000 OCT
central B-scans equally distributed among normal,
iAMD (also known as Drusen), nAMD (also known as
CNV) and DME classes, that is, 250 B-scans per class.
All samples were acquired with the SPECTRALIS
device, but specific acquisition details are not
disclosed.

In summary, the distribution of volumes for the
different classes of the in-house dataset is shown in the
Table. From the normal cases, approximately 70% of
the volumes (176 eyes from 176 patients) were used for
training the DL-system (see the Table). The number of
normal and pathological B-scans in the RETOUCH
dataset is 295 and 391, respectively.

Anomaly DetectionWith Deep Knowledge
Distillation

The proposed anomaly detection framework (Fig. 1)
follows a reverse knowledge distillation paradigm
applied to 2D images.34 It is composed of three main
CNN modules: a teacher (T), a student (S), and
a bottleneck encoder (B). T is a pre-trained model
on a computer vision task, namely classification of
natural images from ImageNet,37 and thus its parame-
ters allow to extract meaningful intermediary represen-
tations (even if not directly related to a specific medical
task). S is a CNN with a similar architecture of T, but
with a smaller number of randomly initialized parame-
ters. During training, T produces a set of intermedi-
ary feature representations, which are combined and
simplified byB. Then, S has to replicate the representa-
tions fromT using as the starting point the summarized
information provided by B. For anomaly detection in
particular, S is trained to replicate T only exposed to
normal (non-anomalous) cases.

T and S have similar model architectures. However,
S has less intermediary representation capacity than T
because of the reduced number of parameters. During
training, S is optimized to replicate the behavior T
for non-anomalous cases and thus at inference time,
the intermediary features of both T and S should be
similar for this type of cases. However, due to the lower
capacity and lack of exposure to anomalies on S, there
will be differences between the outputs of T and S for
anomalous cases. Note that due to the spatial nature of
CNNs, each element of the intermediary corresponds
to a region of the input image. Thus, measuring the
differences in the representations of T andS at different
points of the architecture allows to obtain the relative
location of poorly represented regions. This allows us
to compute both anomaly maps depicting an approxi-
mate location of the anomalies as well as an anomaly
score, which summarizes how much a given sample
deviates from the learned concept of normality.

Definition
LetX∈ R

H×W be the B-scan of sizeH×W to assess.
Let T be a convolutional encoder with N ∈ N interme-
diary levels of interest and corresponding intermedi-
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During training we minimize the 
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Student’s intermediary representations
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during training D > D
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D

Figure 1. Structure of the studied anomaly detection network. A student model is trained to replicate the intermediate representations of
a teacher model when exposed only to normal cases. Differences between the representations allow to measure and localize the anomaly.

ary multi-dimensional feature representations FT
n , e.g.

FT
2 = T2(T1(I )). The weights of T are frozen, that is,

they cannot be changed during training. The height
and width of FT

n (Hn,Wn) are a fraction of H and W
dependent on the current intermediary level n. B aggre-
gates the intermediary outputs of T to a single repre-
sentation, that is, FB = B(FT

0 , ...,FT
N ). Let now S be a

convolutional decoder with similar architecture to T.
At each intermediary level n ∈ N, S computes a feature
representation FS

n with the same dimensions as FT
n ,

e.g. FS
N−2 = SN−2(SN−1(B)). During training, we aim at

minimizing the distance D between all feature vectors
pairs of FT and FS, that is, min

∑N
n

∑
i D(FT

n,i,FS
n,i),

where i points to each feature vector of the feature
maps. During test, we measure the distance between
all feature vector pairs of FT and FS and retrieve
the anomaly scores and anomaly explanation maps as
explained below.

Distance Metric
In addition,18,34 the distance D between the feature

vectors is defined as being a weighted sum of the cosine
distance and the L2 distance, as shown in Equation 1:

D
(
FT
i ,FS

i
) =[

λ

(
1 − FT

i · FS
i

max
(||FT

i ||2 · ||FS
i ||2, ε

)
)

+ (
FT
i − FS

i
)2]

(1)

where FT
i and FS

i are a feature vector from T and S
intermediary representations, respectively, ε is a small
number for numerical stability, and λ is a weighting
factor. In this work, λ = 1.

Loss Function
S is trained using a loss based on the distance metric

D, as shown in Equation 2:

L =
N∑
n

1
In

In∑
i

D
(
FT
n,i,F

S
n,i

)
(2)

where N is the number of intermediary feature repre-
sentations of interest, and In = Hn × Wn is the number
of feature vectors for the feature map at level n.18,34

Anomaly Explanation Map
Anomaly explanation maps indicate the approxi-

mate location of the regions with higher disparities
between the T and S, that is, the regions where there
are likely anomalies. These maps are computed as
follows. At each intermediary feature level n ∈ N,
an anomaly score map Mn ∈ R

Hn×Wn
0+ is computed via

D(FT
n ,FS

n ). All anomaly score maps M are resized via
bilinear interpolation to the image input size H × W,
summed and smoothed with a Gaussian kernel. The
process is repeated independently for each B-scan of an
OCT volume, and the resulting maps are concatenated,
resulting in a volumetric anomaly map.34
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Anomaly Score
The anomaly score summarizes how much a given

input deviates from the learned concept of non-
anomaly. We compute the anomaly score by aggregat-
ing the differences D(FT

n,i,FS
n,i) for each intermediary

representation level n, that is,
∑N

n P(D(FT
n ,FS

n )), where
P is the aggregation function. Unless stated otherwise,
we consider P = max. Using the maximum as the
rule of aggregation instead of global rules, such as
the average, allows to more evenly score anomalous
cases that result from pathomorphological manifesta-
tion of different sizes, for example, drusen and large
fluid pockets. The anomaly score is first computed for
each B-scan of an OCT volume, and we assign the
volume-level anomaly score as the maximum of the B-
scan anomaly scores.34

All the experiments were performed using Python
version 3.9 and PyTorch version 1.12.1, on a worksta-
tion with an Intel Core i7-10700K CPU and NVIDIA
RTX3080GPU. Using the workstation, predictions for
an OCT volume can be obtained in approximately 0.02
seconds.

Statistical Analysis

We assume that the studied anomaly detection
system has ultimately a binary classification goal
(normal versus anomalous), and thus a prediction for
a sample (either a B-scan or an OCT volume) can be
true-positive (TP) or true-negative (TN) if a case is
correctly identified as an anomaly or normal, respec-
tively, or instead false-positive (FP) and false-negative
(FN) if the classification is performed incorrectly. The
followingmetrics are used to quantitatively evaluate the
performance of the system:

• Positive predictive value (PPV; TP/[TP + FP]) and
negative predictive value (NPV; TN/[TN + FN];
both ∈ [0 1]), that is, the proportion predicted
anomalous/normal B-scans that are indeed TPs or
TNs, respectively. PPV in particular is an impor-
tant metric in the clinical practice, with higher
values indicating a lower risk of a sample being
flagged as anomalous while being in fact normal;
• The receiver operating characteristic (ROC) curve,
showing the TP rate as a function of the FP rate
by varying the decision threshold on the predicted
anomaly score;
• The precision recall (PR) curve, that is, the PPVas a
function of the true-positive rate (TN/(TN + FP)),
also obtained by varying the decision threshold;
• The ROC curve can be summarized by its area
under the curve (AUC) ∈ [0 1], with AUC = 0.5

indicating a random predictor, and 1 a perfect
classifier. The PR curve can be summarized with
the average precision (AP), the weighted mean of
the precisions achieved at each threshold, with the
increase in recall from the previous threshold used
as the weight.

We additionally report correlations using Pearson’s
and Spearman’s rank coefficients. The first evalu-
ates the linear correlation between two measurements,
whereas the second assesses the preservation of the
ranking of the measurements without considering the
relationships to be linear.

Experiments

Detection of Anomalous OCT Volumes
To evaluate the capability of distinguishing between

normal and anomalous volumes (TN and TP, respec-
tively), we computed a volume-wise anomaly score
(see the Anomaly Detection With Deep Knowledge
Distillation section) for each sample of the in-house
dataset test set. We then compared the predicted
scores from each of the anomalous classes to those
from the normal volumes. We also computed the
average anomaly profiles across B-scans of a volume
to identify the most likely locations of abnormal B-
scans for the pathologies in the study. Due to the
variability in the number of B-scans per volume,
we first linearly interpolated all profiles to the same
dimension. Then, we computed the average anomaly
score across all volumes at each relative position.
Finally, we conducted a qualitative evaluation by
assessing the anomaly maps for the different classes of
interest.

Detection of Anomalous B-Scans
In addition to volume-level detection (see theDetec-

tion of Anomalous OCT Volumes section), it is
also of interest to understand how well the system
can identify anomalous B-scans using the predicted
anomaly score.We conducted this experiment using the
public RETOUCH dataset and the Kermany dataset.
For the RETOUCH dataset, we considered a B-scan
to be anomalous if there was at least one manual
lesion annotation. Still using the RETOUCH dataset,
we further compared the anomaly scores of B-scans
without lesions to those with small, medium, and large
abnormalities (according to the disease size tercile).
Results are evaluated in terms of ROC and PR curves
and corresponding AUCs computed for each volume.
We additionally computed the PPV and NPV scores
for each of the volumes in the RETOUCH dataset
via a leave-one-out scheme by repeating the follow-
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ing procedure for each volume: (i) constructing a
single ROC curve using the B-scans from all volumes
except those from the test volume, (ii) computing the
threshold of the optimal cutoff point (the one closest
to the point [0,1] in the plot), and (iii) using this
threshold to binarize the anomaly scores of the test
volume.

Association of Anomaly Score With Disease Severity
We further validate our method in the RETOUCH

dataset: (i) to assess whether the values of the predicted
anomaly maps correlate with the size of the anoma-
lies in each B-scan, and (ii) to confirm that the model
behaves appropriately across different disease stages.
Our goal is to ensure that the anomaly scores meaning-
fully reflect the extent of pathological features and that
the model is robust in detecting anomalies irrespec-
tive of disease progression. For that, we calculated the
lesion area, as annotated manually, for each of the
B-scans from the RETOUCH dataset. We computed
a B-scan-wise anomaly map score by averaging all
values of the anomaly map larger than 0.3 (the average
anomaly score in the training data), that is, we ignored
small activations. We then evaluated the correlation
between the lesions’ area (computed as the sum of all
IRF, SRF, and PED areas per B-scan) and the anomaly
map scores using Pearson’s and Spearman’s correlation
coefficients.

Results

We evaluated the system in terms of its capability
to detect non-healthy OCT volumes (see the Detec-

tion of Anomalous OCTVolumes section) and B-scans
(see the Detection of Anomalous B-Scans section). We
additionally assess the relation between the B-scan-
level anomaly scores and the severity of the disease (see
the Association of Anomaly ScoreWith Disease Sever-
ity section).

Detection of Anomalous OCT Volumes

The ROC and PR curves for the test set of the in-
house dataset are shown in Figure 2. The average AUC
and AP are 0.94 ± 0.05 and 0.91 ± 0.14, respectively.
Results suggest that cases with pathologies that cause
higher deformation of the retinal tissue, for example,
those with accumulated fluid, are easier to detect.
The average B-scan-wise anomaly profiles are shown
in Figure 3 and indicate, as expected, a higher lesion
presence in the macular center.

Representative examples of the anomaly maps
generated by the algorithm for the different classes
are shown in Figure 4. Overall, the generated maps
are meaningful for retinal diseases of different sever-
ity stages. The method is particularly capable of
correctly highlighting small to medium pathomorpho-
logical manifestations that cause changes in the normal
retinal layer structure (see Fig. 4 iAMD and CSC). For
large fluid accumulations (see Fig. 4 nAMD andRVO),
the system tends not to highlight the fluid itself, but
rather the adjacent deformed region.

Detection of Anomalous B-Scans

The capability of the system to detect anomalous
B-scans is shown in Figures 5 and 6. The perfor-
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Figure 2. Volume-level anomaly detection performance (normal class versus each of the pathological classes) on the test set of the in-
house dataset.
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Figure 3. Average B-scan-wise anomaly profiles for the normal class compared with each of the pathological classes on the test set of the
in-house dataset.
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Figure 4. Representative examples of anomaly maps for the different classes in the study (in-house dataset). Colormaps indicate the
anomaly score.
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Figure 5. Average volume-wise ROC and PR curves for non-normal B-scan detection in the RETOUCH dataset, considering different levels
of pathomorphological manifestations (terciles of the percentage of B-scan area affected by lesions). The shaded area corresponds to the
standard deviation of the average curves for all volumes.
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Figure 6. B-scan level anomaly detection performance (normal class versus each of the pathological classes) on the Kermany dataset.
Patho. corresponds to all pathological (non-normal) cases considered as a single class.

mance for the RETOUCH dataset was computed
volume-wise, whereas for the Kermany dataset it was
computed for all samples together as only the central
B-scans are available. For the RETOUCH dataset,
the overall detection ROC AUC was 0.81 ± 0.11
and AP was 0.82 ± 0.18. For the Kermany dataset,
the overall pathological B-scan detection AUC was
0.87 and AP was 0.94. The volume-wise B-scan-level
PPV and NPV are 0.90 ± 0.11 and 0.55 ± 0.26.
The particularly high PPV highlights the robustness

of the system in identifying B-scans with diagnostic
interest.

Association of Anomaly Score With Disease
Severity

The results (Fig. 7) show a strong nonlinear ranking
(Spearman’s rank correlation of 0.78 when considering
both AMD and RVO cases) between the scores of the
predicted anomalymaps and true lesion size. The corre-
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Figure7. AverageB-scan-wise anomaly score as functionof the relative area of themanual annotations of IRF, SRF, andPED in the RETOUCH
dataset for cases with AMD and RVO.

lation was similar for both diseases. The average score
of the B scan level anomaly map is therefore a good
indicator of disease severity.

Discussion

This study evaluated a robust DL-based framework
designed for automatic anomaly detection in retinal
OCT volumes, demonstrating promising results at both
the volume and individual B-scan levels. Notably, we
conducted an extensive evaluation of the method using
a large and clinically relevant OCT dataset, ensur-
ing a thorough assessment of its performance and
potential clinical applicability. The method uses an
unsupervised knowledge distillation T – S approach
to identify anomalous cases. As a reminder, in this
study, we considered an OCT volume as anomalous
if it showed signs of retinal disease, which in our
test dataset appeared as: iAMD, nAMD, GA, DME,
Stargardt disease, RVO, or CSC. The dataset contains
cases with different severity stages from each of the
diseases.

Automated retinal OCT anomaly detection is an
active research topic. For instance, Seebock et al.38
proposed to use an uncertainty-aware retinal layer
segmentation model trained in normal data to identify
potential anomalous OCT regions. In anomalous cases,
it becomes difficult for the network to properly segment
layers, increasing its uncertainty and thus allowing for
anomaly detection. However, this method may miss
small anomalies, such as drusen, if the network is
still properly capable of segmenting the retinal layers.

In addition, weakly supervised approaches are not as
future-proof as desirable, because annotation efforts
have to be repeated whenever shifts in acquisition
settings occur, for example, due to a new acquisition
equipment. Because of this, another well-established
approach is to use normal data to train genera-
tive models.39,40 In essence, these methods work by
learning to reconstruct normal B-scans. At test time,
when provided with anomalous cases, the networks
fail the reconstruction process because they were
never exposed to such type of cases. As a conse-
quence, measuring the reconstruction error between
the input and generated images allows to infer if a
B-scan is anomalous. However, reconstruction-based
approaches are notably difficult to train due to their
computational demand and need for careful hyper-
parameter tuning and potential training instabilities.
In addition, although conceptually similar to the
approach here presented, which only uses normal
data for training, measuring differences in the pixel
space, instead of in the feature space, make these
approaches very susceptible to noise and reconstruc-
tion errors, ultimately increasing the risk of FP
detections.

A notable example of an unsupervised retinal OCT
detection method is presented by Tiosano et al.41
In their work, the authors propose to use a CNN
pre-trained in natural images to create a region-level
feature set from normal OCT cases. These local region
representations are then processed to eliminate redun-
dant samples, creating a representative feature bank.
At test time, anomalies are detected by measuring
the K nearest neighbors (kNNs) distance between
the extracted features and those from the feature
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bank. Similarly to our approach, having a region-
based distance computation allows to produce anomaly
explanation maps. However, their method works on a
single feature scale, making their out-of-the-box maps
coarser. In addition, the performance of these types
of multi-step approaches may be highly reliant on
hyperparameter selection. Particularly, changes in the
number of samples of the feature bank and neigh-
bors during distance calculation can greatly impact the
behavior of the approach.

Instead, in this work, we contribute to the exist-
ing research on unsupervised retinal OCT anomaly
detection by assessing the performance of an easy to
set-up end-to-end system that requires no annotation
effort (apart from the collection of normal cases) and
minimal hyperparameter tuning. The system showed
robust detection performance of different pathomor-
phological manifestations spanning AMD, RVO, and
DME. Our results highlight the potential of such
types of DL-approaches in enhancing the accuracy
and efficiency of retinal OCT image analysis, poten-
tially reducing the burden on clinicians and care
providers by providing a reliable preliminary screening
tool.

One of the significant advantages of this DL-
based anomaly detection system is its unsupervised
nature, requiring only data of normal scans for train-
ing. Indeed, this approach circumvents the need for
a large, labeled dataset of pathological images, which
can be challenging and time-consuming to compile.
Instead, by training the model exclusively on normal
retinal OCT images, it learns to recognize the standard
anatomic structures and patterns of the retina. Conse-
quently, any deviation from this learned normality is
flagged as an anomaly. Besides the simplification of the
model preparation process, especially in terms of data
collection and curation, such approach also ensures
that the system can generalize to a wide variety of
anomalies, including previously unseen pathological
conditions. The unsupervised nature of the studied
approach allows it to be both adaptable and robust,
making it a highly practical solution for real-world
clinical settings where the diversity of abnormalities is
vast and continually evolving.

By achieving a high detection performance at the
volume level, as demonstrated by the 0.94 average
volume-level AUC (see the Detection of Anomalous
OCT Volumes section, Fig. 2), models such as this
one ensure that entire retinal scans can be rapidly
and accurately assessed for anomalies, facilitating early
detection of various retinal diseases. At the B-scan level
(see the Detection of Anomalous B-Scans section),
the system’s ability to pinpoint specific abnormal slices
within a volume allows for more detailed examina-

tion and focused clinical attention on the most relevant
areas of the dense OCT scan, optimizing the use of
clinician time and expertise. In the context of daily
clinical practice, this level of automation is essential
for managing the increasing volume of retinal OCT
scans, driven by a growing and aging population.
On the other hand, the B-scan level detection perfor-
mance was not the same for all types of pathologies.
Indeed, we verified that the detection performance is
directly related with the amount of pathology present
and its size (see the first lesion size in Fig. 5 and
iAMD performance in Fig. 6). A possible explana-
tion is that smaller lesions are more subtle and there-
fore may not be adequately captured by the interme-
diate features of the teacher model T. Nevertheless,
the B-scan level detection AUC values >0.8 suggest
that this approach can reduce a significant amount of
workload in terms of identifying slices of diagnostic
relevance.

Following the good B-scan-level anomaly detec-
tion performance, one of the standout features of
our system is its explainability, which is crucial for
clinical adoption. The explanation maps generated
by the model provide a visual representation of the
detected anomalies, enabling clinicians to understand
the reasoning behind the model’s decisions (see the
Detection of Anomalous OCT Volumes section, in
particular, see Fig. 4). This transparency is vital to build
trust in the system and facilitates its integration into
diagnostic workflows. Moreover, the ability to visual-
ize anomalies directly on retinal OCT images aids in the
quick localization of potential issues, streamlining the
diagnostic process. We’ve additionally shown (see the
Association of Anomaly Score With Disease Severity
section) that the scores of the anomaly maps correlate
(Spearman’s correlation coefficient>0.7) properly with
the amount of disease activity. Because of all of this,
producing these explanation maps not only assists in
verifying the model’s findings but may also enhance the
clinician’s ability to make informed decisions regard-
ing patient care. On the other hand, the produced
anomaly maps still do not properly highlight all patho-
logical manifestations. As shown in Figure 4 nAMD
and RVO, large fluid pockets are not fully highlighted.
This behavior is most likely due to the similarity of the
intensity and noise profiles between large fluid pockets
and background. As the method is inherently trained
patch-wise, the StudentS has learned to properly repre-
sent low-intensity noisy regions during training (i.e.
background) and thus is also partially capable of repre-
senting fluid. Despite this, the anomaly maps can still
guide the attention of the user to the relevant location
within the B-scan, and thus serve as a valuable tool to
interpret the algorithm’s output.
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Unsupervised anomaly detection is a particu-
larly challenging problem, especially in comparison
to supervised learning. Unlike supervised methods
that rely on labeled samples, unsupervised anomaly
detection requires distinguishing unseen pathological
patterns fromnormal variationswithout any additional
information. A key challenge in this task is encoding
invariances, that is, determining what the model should
be insensitive to. This includes, for example, account-
ing for variations in acquisition settings, anatomi-
cal diversity across individuals, or benign structural
changes. This remains an open research problem in
medical computer vision. In this work, we focus
on a proof-of-concept, demonstrating the feasibility
of unsupervised anomaly detection for retinal OCT
screening.

The presented work has a few limitations. Being an
anomaly detection approach, an obvious pitfall is that
the system cannot produce a probability of a specific
disease being present in a volume. Indeed, there is a
trade-off between the studied T-S approach, which
is better at performing non-specific screening tasks,
and fully supervised approaches, which can be used
for accurately diagnosing a known group of diseases
while making obvious errors for cases outside their
learning curriculum. In the same line of thought,
due to its generic anomaly detection capability, the
approachmay not be capable of distinguishing between
anomalies caused by pathologies from those that result
from the acquisition pipeline (e.g. noise and artifacts).
Albeit not problematic for the studied datasets, in
real-world data this limitation may lead to incor-
rect volume flagging. In addition, the anomaly maps
produced by the system are not yet sufficiently compre-
hensive to enable fully automated detection of patho-
logical biomarkers. In particular, they are not precise
enough to pinpoint spatial locations, neither do they
allow to differentiate between various types of abnor-
malities. This limitation makes it difficult to reliably
identify the underlying causes of anomalies, especially
in cases where the maps highlight regions that are
merely distorted or out of place rather than directly
indicative of pathological biomarkers, such as fluid
accumulation. For example, in large fluid pockets, the
receptive field of the model, that is, the effective region
of the image the model is assessing, is not large enough
to cover the entirety of the pathological region, thus
leading to subpar explanation maps. These limitations
highlight an exciting opportunity for further work,
which can focus on enhancing the system’s explainabil-
ity by incorporating methods that provide more inter-
pretable insights into why certain regions are flagged as
anomalous. For example, integrating domain-specific
priors, such as the expected thickness of retinal layers,

could allow to improve the anomaly maps without
sacrificing the generalization capabilities of the system.
This would not only improve the system’s reliability
but also further increase its practical utility in clini-
cal settings, where transparent and interpretable results
are essential for effective decision making. Finally, the
assessed system considers each B-scan individually and
thus does not take advantage of the inherent inter-slice
information available in volumetric OCT scans, hinder-
ing its ability to produce coherent results for neigh-
boring scans. Incorporating 3-dimensional (3D) infor-
mation into the system poses several challenges. First,
leveraging 3D data significantly increases the compu-
tational complexity of the model. In particular, both
memory and processing requirements grow because
volumetric data involves processing not just individ-
ual 2D slices but also their spatial relationships in a
3D context. Such demanding computational require-
ments are not always available, making the manage-
ment of 3D medical data a current topic of research
in the scientific community. Second, the thickness of
slices and their spacing in volumetric scans depend on
the acquisition protocol, introducing variability that
complicates the extraction of meaningful 3D features.
For instance, thicker slices or uneven spacing can
result in a loss of fine details and inconsistencies in
the volumetric representation, which could degrade
model performance. Moreover, the alignment of slices
to maintain spatial coherence during pre-processing
and model inference is another technical challenge,
particularly in cases where motion artifacts or struc-
tural distortions are present in the data. To address
these issues, future work should focus not only on
designing more efficient algorithms capable of process-
ing 3D information but also on extending dataset
size and diversity to better capture these complexities
and ensure robust model performance across a range
of scenarios. In addition, although we evaluate our
system in seven different common pathologies, there
is a risk that our findings do not generalize to other
pathomorphological manifestations. Future research
should thus also consider extending the validation of
the system to a wider range of diseases. Likewise,
the in-house dataset primarily consists of Caucasian
individuals, which may limit the generalizability of
our findings to populations with different demographic
compositions.

Additionally, all data in the in-house dataset were
acquired using a single OCT device type (Spectralis),
which may introduce certain limitations in applicabil-
ity when considering other acquisition systems. This
is primarily due to potential differences in factors
such as noise profiles, field of view, and resolution.
However, it is important to note that OCT screen-
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ing is commonly device-specific, as both the hardware
and software configurations of different devices influ-
ence the imaging characteristics. Therefore, the use of
data from a single device is not an unusually restric-
tive limitation. Indeed, it is reasonable to expect that
the general principles underlying the assessed anomaly
detection framework can generalize effectively to other
OCT devices with proper fine-tuning or calibration.
That is, whereas the in-house dataset reflects the
characteristics of the Spectralis-acquired images, the
broader approach remains adaptable and applicable to
images obtained from other systems.

In conclusion, the presented DL-based anomaly
detection system for retinal OCT images shows
the potential of unsupervised anomaly detection
approaches. The high accuracy at both the volume and
the B-scan level ensures comprehensive and reliable
anomaly detection, while the anomaly maps provide
necessary transparency for clinical use. These features
collectively position the system as a valuable tool in
the early detection and diagnosis of retinal diseases,
potentially improving patient outcomes through timely
and accurate interventions. The system’s unsupervised
nature, requiring only normal data for training, simpli-
fies the data collection process and enhances its ability
to detect a wide range of anomalies, including previ-
ously unseen conditions. Furthermore, by automat-
ing the analysis of large volumes of retinal OCT
data, this system has the potential to both alleviate
the workload of clinicians as well as increase diagno-
sis success by providing an objective and explainable
second-opinion that could mitigate oversight caused
by common factors such as fatigue, time stress, or
subjective qualitative assessment. Ultimately, generic
approaches such as the one here discussed can consti-
tute a relevant complement to task-specific automated
AI-based systems, improving clinical workflow and
patient care.
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