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Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness in
the developed world. Due to an aging population, its prevalence is expected to increase,
making novel and optimized therapy options imperative. However, both late-stage forms of
the disease, neovascular AMD (nAMD) and geographic atrophy (GA), exhibit considerable
variability in disease progression and treatment response, complicating the evaluation of
therapeutic efficacy and making it difficult to design clinical trials that are both inclusive
and statistically robust. Traditional trial designs frequently rely on generalized endpoints
that may not fully capture the nuanced benefits of treatment, particularly in diseases like
GA, where functional improvements can be gradual or subtle. Artificial intelligence (AI)
has the potential to address these issues by identifying novel, condition-specific biomarkers
or endpoints, enabling precise patient stratification and improving recruitment strategies.
By providing an overview of the advances and application of AI-based optical coherence
tomography analysis in the context of AMD clinical trials, this review highlights the
transformative potential of AI in optimizing clinical trial outcomes for patients with nAMD
or GA secondary to AMD.

Keywords: age-related macular degeneration; artificial-intelligence; optical coherence
tomography; clinical endpoints

1. Introduction
Age-related macular degeneration (AMD) is the leading cause of irreversible visual im-

pairment in individuals over 55 years in developed countries, affecting millions worldwide
and imposing a substantial burden on healthcare systems [1,2]. Due to aging populations,
the prevalence of AMD is expected to rise significantly, further exacerbating the challenge
of managing this complex progressive disease. Late-stage AMD is classified into two
distinct forms: neovascular AMD (nAMD), characterized by the growth of abnormal blood
vessels, and geographic atrophy (GA), defined by the progressive loss of the retinal pigment
epithelium (RPE), photoreceptors, and underlying choriocapillaris [3]. Both forms result in
central vision loss, severely affecting patients’ ability to perform essential daily activities
such as reading, driving, and recognizing faces [1].

Treatment advances over the past two decades have markedly improved outcomes
in nAMD. Anti-vascular endothelial growth factor (VEGF) therapies effectively reduce
vision loss by suppressing neovascularization and controlling fluid accumulation in the
retina. However, the burden of frequent intravitreal injections and the variability in patient
response underscore the need for more tailored therapeutic approaches [4,5]. In contrast,
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therapeutic options for GA have only recently emerged, with complement inhibitors like
pegcetacoplan (Syfovre, Apellis) and avacincaptad pegol (Izervay, Astellas Pharma) gaining
regulatory approval in the United States (U.S.) in 2023 [6,7]. While these therapies represent
significant milestones, their modest impact on functional outcomes highlights the urgent
need for improved strategies to preserve vision [8].

Optical coherence tomography (OCT) is the cornerstone of AMD diagnosis and
monitoring, offering a non-invasive imaging modality with high-resolution and three-
dimensional visualization of retinal structures. It plays a crucial role in identifying
biomarkers of disease activity, such as fluid compartments in nAMD or layer integration
in GA, as well as detecting subclinical changes that may predict progression from
early stages of AMD to advanced disease [2,9]. Despite its strengths, the detailed
interpretation of OCT volumes remains labor-intensive and subject to variability among
graders, particularly in the context of large multicenter clinical trials. These limitations
hinder the timely and standardized assessment of disease activity, emphasizing the need
for innovative solutions.

Artificial intelligence (AI) has emerged as a transformative tool in AMD research,
with the potential to address these challenges and revolutionize both clinical practice
and research. AI consists of subfields including machine learning (ML), deep learning
(DL), large language models (LLM), and many more [10]. ML is a subset of AI that
acquires knowledge automatically from experience and can identify the features that
were previously extracted by humans. DL is a subgroup of ML where artificial neural
networks are organized in layers. In medical image analysis, a common type of DL
termed convolutional neural networks (CNN) is most prominent. By adding more layers
between the input layer and the output layer, the data can be processed in a more abstract
way, resulting in increased effectiveness. The advantage of CNNs is that, in addition
to classification, it can perform feature extraction without human intervention. This is
therefore called unsupervised learning or end-to-end learning. While ML reaches its limit
with the discriminative power of the selected features, the performance of DL increases
with the amount of data it is presented [9,11].

In the context of AMD, AI-based algorithms, particularly those employing DL, excel
at analyzing large and complex datasets, enabling precise and reproducible quantification
of biomarkers such as retinal fluid volumes, RPE atrophy, and photoreceptor integrity [12].
This capability not only reduces interobserver variability, but also accelerates data analysis,
making it feasible to incorporate more sophisticated endpoints in clinical trials [13]. More-
over, AI has demonstrated utility in predicting disease progression, stratifying patients
based on their likelihood of therapeutic response, and exploring the intricate relationship
between structural changes on OCT and visual function [14].

The integration of AI into clinical trial designs has profound implications for opti-
mizing therapeutic development in AMD. By improving patient selection, AI can ensure
that trials enroll individuals most likely to benefit from investigational treatments, thereby
enhancing statistical power and reducing costs [15]. Additionally, AI-driven analyses of
multimodal imaging data can uncover novel biomarkers and refine our understanding of
AMD pathophysiology, paving the way for more targeted and effective interventions [9].
Finally, by bridging the gap between structural and functional assessments, AI offers a
holistic approach to evaluating treatment efficacy, addressing both anatomical changes and
their impact on patients’ quality of life [16,17].

This review explores the transformative role of AI in rethinking AMD clinical trials,
emphasizing its potential to address unmet needs in therapeutic development and optimize
outcomes for patients with nAMD and GA.
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2. AI for Optimizing Clinical Trial Outcomes in Neovascular AMD
AMD is, per definition, a degenerative disease, but the development of macular neo-

vascularization (MNV) may represent a serious complication [2]. In the active disease state,
the neovascular network leaks, which results in pathological fluid accumulation, leading to
acute and severe vision loss [18]. The management of nAMD has seen a breakthrough with
VEGF inhibitor therapies, reducing blood and fluid leakage, thus helping patients maintain
their visual acuity [19]. However, nAMD treatment trials show large variability in disease
progression and treatment response among patients, with an estimated range of 10–50%
of patients showing suboptimal or inadequate responses, depending on the study criteria
used [20]. This is especially true in more long-term follow-up studies. AI can address
these issues by enabling more precise patient stratification, identifying subgroups with
shared disease characteristics or treatment responses through quantitative image analysis.
Additionally, AI can help optimize trial design by predicting patient outcomes and by
suggesting personalized endpoints that more accurately reflect meaningful improvements.

2.1. Clinical Endpoints and Monitoring of Neovascular AMD Using AI

OCT has emerged as the leading imaging modality for nAMD monitoring due to its
ability to provide three-dimensional visualization of pathological fluid and retinal structure
down to pixel-level precision [21]. Several studies have investigated the effect of fluid type
as seen on OCT and the dichotomous presence/absence of fluid on visual function and
anti-VEGF treatment outcomes. Differentiation is made between intraretinal fluid (IRF),
subretinal fluid (SRF), and pigment epithelium detachment (PED). The negative impact of
IRF on visual function has been shown frequently in numerous reports, while the effects of
SRF and PED are still an ongoing debate [4,22–26].

An indirect parameter of exudation is the measurement of the average retinal thickness
in the central 1 mm diameter of the Early Treatment Diabetic Retinopathy Study (ETDRS)
grid. Central subfield thickness (CST) is a common measure for structural outcomes in
clinical studies as it has been available since the early days of OCT [5]. CST can be either
measured between the internal limiting membrane (inner border) and the RPE or the
Bruch’s membrane (outer border) [5,27]. As macular fluids follow a distinct topographical
distribution, CST is predominantly influenced by IRF and, depending on the definition, also
by PED [28]. However, the majority of exudative fluid consists of SRF and PED, indicating
that CST might not be fully representative of disease activity in nAMD [13]. This is further
highlighted by the lack of correlation between CST with central IRF and SRF or CST with
best-corrected visual acuity (BCVA) [29,30].

As CST is not an ideal indicator of exudation in nAMD, quantitative fluid measurement
is required in order to allow for a more precise depiction of disease activity. Whereas manual
segmentation is practically unfeasible and prone to errors, advancements in AI have driven
the development of ML algorithms, enabling the objective and reliable quantification of
fluid compartments on OCT, and thus offering a precise alternative to manual or qualitative
assessment in real-time. How CST measurements compare with fluid segmentation is
visualized in Figure 1.

Prior to clinical application of AI-based image segmentation methods, algorithms are
typically evaluated based on the metric of the Dice Similarity Coefficient (DSC), which
measures the spatial overlap between the automatically segmented region and the corre-
sponding human reference annotation or ‘ground truth’. Additionally, receiver operating
characteristic (ROC) curves and area under the curve (AUC) may be used to measure the
discrimination ability of the algorithm for the specific task. For their successful use in
clinical trials, algorithms must be consistent with or even superior to the ground truth of
certified expert readings.
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illustration of CST, the mean thickness in the central 1 mm diameter of the ETDRS-grid (red) between the
internal limiting membrane (green) and the Bruch’s membrane (yellow). (C,F): Example of automated
segmentation of IRF (red), SRF (yellow) and PED (blue) using the Fluid Monitor (Version 2.5, RetInSight,
Vienna, Austria). ETDRS = Early Treatment Diabetic Retinopathy Study, CST = central subfield thickness,
IRF = intraretinal fluid, SRF = subretinal fluid, and PED = pigment epithelium detachment.

The pioneering Fluid Monitor (RetInSight, Vienna, Austria) is the first AI algorithm
meeting the medical device regulation (MDR) 2017/745 requirements for class IIa medical
devices as a clinical decision support system (CDSS) in ophthalmology [31]. It is based on
a CNN and allows for pixel-wise quantification of IRF, SRF, and PED in the entire OCT
volume [12]. Volume quantities are computed in nanoliters and visualized in a single report.
By generating follow-up charts, it enables investigators to assess fluid dynamics and disease
progression over time. In the U.S., it is currently available for research use only, with FDA
approval for the application in the clinical routine being sought. RetinAI Discovery (RetinAI,
Bern, Switzerland) is another European conformity CE-marked medical device incorporating
a CNN that allows for fluid compartment quantification in OCT scans. In the U.S., the RetinAI
module for fluid quantification may be used for research purposes only [32].

Retrospective analyses of pivotal trials examining anti-VEGF treatment outcomes in
nAMD by leveraging AI-based biomarker segmentation of OCT volumes have yielded
significant insights into the pathological implications of distinct fluid compartments and
suggest refined assessments of treatment impact. These findings advance beyond the
traditional dichotomous assessment of fluid presence or the conventional reliance on CST
measurements and underscore the potential utility of novel biomarkers as refined clinical
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trial outcome measures. The application of automated fluid segmentation to the data of
the HARBOR trial revealed characteristic resolution patterns of each fluid compartment
after the first anti-VEGF injection, with IRF declining the greatest, followed by SRF, both of
which remained low under treatment [13]. In contrast, the PED response was very limited,
with no significant volume reduction during follow-up. Furthermore, the quantitative fluid
analysis confirmed the detrimental impact of IRF on worse visual outcomes and a marginal
positive correlation of SRF with BCVA [13]. A later analysis of the HARBOR data by Riedl
et al. provided notable results. Considering only the follow-up period after the loading
dose, SRF resolution was associated with a more pronounced functional improvement
than IRF [33]. These differences between fluid compartments are not reflected by CST
measurements, and thus currently often not taken into consideration when assessing
treatment effects in clinical trials. Pawloff et al. [34] performed a comprehensive evaluation
of the algorithm used for the above-mentioned analyses [12], using data from the HAWK
and HARRIER trials. The evaluation demonstrated that the identification of fluid volumes
using DL-based segmentation of retinal OCT scans reached high concordance with expert
gradings performed by clinicians, efficiently achieving precise results while avoiding
human inter-reader variability [34].

The FLUID study contributed to a shift in paradigm, suggesting that SRF, particularly
when stable or minimal, may not need to be eliminated in the management of nAMD. In
this study, visual acuity outcomes in an intensive treat-and-extend (T&E) arm, which aimed
for complete resolution of qualitatively assessed IRF and SRF, were compared to outcomes
in a relaxed T&E arm, which tolerated SRF unless it exceeded a threshold of 200 µm at
the foveal center before extending treatment intervals. Originally, the study demonstrated
that both treatment arms achieved comparable visual acuity after two years with fewer
injections in the relaxed arm [4]. However, a post hoc analysis by Reiter et al. using AI-
based pixel-wise fluid quantification revealed no significant quantitative differences in SRF
or IRF between the two treatment arms at any study-specific time point, highlighting the
more objective and precise fluid determination achieved using AI [35]. A further post hoc
analysis investigating the impact of residual SRF volumes on treatment outcomes showed
that interval extension despite residual SRF led to a significant increase of SRF volume
and associated BCVA decline at the subsequent visit. However, this effect was measured
only in the short term [36]. These analyses highlight the value of precise quantification
of fluid compartment volumes made possible by AI for capturing true structure–function
correlations, enabling a more suitable assessment of treatment efficacy.

The HAWK and HARRIER studies were large, randomized, phase III clinical trials
designed to evaluate the efficacy, safety, and durability of brolucizumab compared to afliber-
cept, two anti-VEGF treatments for nAMD [37]. Post hoc automated fluid quantification
applied to this large clinical trial dataset revealed that high volumes of IRF, SRF, and PED
individually result in progressive vision loss. By measuring PED volumes quantitively,
fluctuations within this compartment could be shown during the follow-up for as long as
96 weeks, reflecting the progressive nature within the subretinal fibrovascular network [38].
While a previous study has shown the efficacy of aflibercept in resolving PED, an analysis
by Schmidt-Erfurth et. al. on the application of automated and precise volume quantifica-
tion to the HAWK and HARRIER data highlighted the superior efficacy of brolucizumab
in PED reduction, suggesting the higher sensitivity of AI-based quantification to subtle
treatment differences [38,39]. This capacity may be useful, especially when the goal is the
steady suppression of disease activity. Further post hoc analysis of HAWK by Ehlers et al.
using automated ML-enhanced segmentation demonstrated that high volatility of exuda-
tive features, including SRF, during the maintenance phase of treatment was associated
with photoreceptor attenuation and BCVA loss [40].
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Investigations of the implications of structure–function correlations are crucial for
optimizing treatment protocols and outcomes. Post hoc analyses of the Fight Retinal
Blindness! (FRB!) registry data compared the impact of high versus low macular fluid
volumes on structural and functional outcomes. IRF, SRF, and PED were automatically
quantified on OCT using an AI-based tool [12]. As in the previous studies discussed, the
unfavorable effect of IRF on BCVA outcomes was confirmed. Regarding SRF and PED,
there was no significant difference between the high- and low-volume subgroups in BCVA
outcomes, despite patients with high SRF and PED volumes receiving significantly more
injections [41]. Further, Mares et al. investigated the FRB! study data on the association of
AI-based fluid quantification with the structural integrity of the automatically segmented
ellipsoid zone (EZ) layer, a structural biomarker for photoreceptor integrity [42,43]. High
central IRF volume had the most severe negative impact on EZ thickness, while high SRF
volumes showed no significant association with EZ integrity changes. Conversely, the
high PED subgroup showed a significant association with both EZ thinning and loss [43].
With EZ integrity shown to be closely related to visual acuity, robust structure–function
correlation assessments should contain both fluid volumes and information about the
structural integrity of the neurosensory retina [40,44].

Given these findings, beyond the functional and conventional morphological end-
points typically used in pivotal trials, a detailed assessment of the treatment’s efficacy in
terms of reliable and objective biomarker analysis has become essential. Such an approach
allows for a more comprehensive characterization of available and emerging therapies,
enhancing our understanding of how best to tailor treatment regimens and change the
course of the disease to achieve optimal functional outcomes and personalized precision
medicine. Two pioneering clinical trials (NCT04662944, NCT05093374) are investigating
the impact of AI-assisted fluid quantification on patient treatment in outpatient clinics,
however the results have not yet been published.

2.2. Leveraging AI for Patient Recruitment to Enhance nAMD Treatment Outcomes

Previously discussed analyses emphasized the importance of distinguishing between
types of pathological fluid, as each fluid subtype exhibits distinct responses to anti-VEGF
therapy. This differentiation is critical for tailoring treatment strategies and optimizing clinical
trial outcomes. However, even before the onset of exudation, the classification of MNV
subtypes may serve as a valuable indicator for identifying patients who are likely to derive the
greatest benefit from treatment. Type 1 MNV involves neovascular growth beneath the RPE
and is more strongly linked to SRF. Type 1 MNV requires more frequent injections but has a
lower risk of developing GA and better long-term vision maintenance. Type 2 MNV arises
from choroidal vessels breaking through the RPE into the neuroretina and typically responds
faster to treatment due to its location above the RPE. However, it also carries a higher risk of
fibrotic scarring [45,46], impacting visual outcomes [47]. Type 2 MNV tends to show higher
levels of IRF compared to type 1 [48]. On the other hand, type 3 MNV originates from the
retinal circulation, with neovascularization growing from the deep capillary plexus toward the
outer retina [18]. This latter form of MNV greatly benefits from early detection and treatment,
as delayed intervention can lead to worse outcomes and higher rates of GA. While validated
AI tools for MNV classification are not yet available, promising advancements highlight their
potential. A recent study tested a novel AI algorithm (aiMNV) capable of detecting and
segmenting MNV in eyes with nAMD using OCT and OCT angiography [49]. The algorithm
demonstrated high diagnostic accuracy, with 96.4% sensitivity and 98.3% specificity, and
excellent segmentation performance. In the future, validated AI tools capable of accurately
identifying MNV subtypes could support clinicians in optimizing treatment plans, improving
outcomes, and reducing the risk of overtreatment or undertreatment.
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Moreover, AI models have shown significant promise in predicting treatment outcomes
and individual needs for patients with nAMD. AI methodologies using OCT imaging biomark-
ers have successfully predicted retreatment intervals and visual outcomes in T&E regimens.
IRF and SRF volumes were identified as critical predictive markers, reinforcing the impor-
tance of quantitative OCT analysis [50]. Additionally, a DL architecture has shown an 84.6%
accuracy in predicting short-term treatment responders versus non-responders, outperform-
ing ophthalmologists [51]. Looking at the plethora of anti-VEGF therapies available today,
identifying the best treatment for each patient is crucial. Such an approach could pave the
way for precision medicine in AMD, ensuring that patients receive the most effective therapy
based on their unique disease characteristics and response profiles. AI models, by integrating
clinical, imaging, and treatment data, hold the potential to revolutionize this process, offering
personalized care and optimizing outcomes for patients with nAMD.

3. AI for Optimizing Clinical Trial Outcomes in Geographic Atrophy
The non-neovascular late-stage form of AMD, termed geographic atrophy (GA), is

characterized by the progressive and irreversible degeneration of photoreceptors, RPE, and
the underlying choriocapillaris. The slow progression of this form of AMD means it often
remains unnoticed and is only diagnosed at a stage where vision is already significantly
impaired. Furthermore, GA encompasses a range of diverse and phenotypically distinct
forms, with visual function primarily influenced by the extent of affected area relative to the
fovea [52]. GA currently affects 5–10 million people worldwide and its prevalence is expected
to increase [53]. It is thus of critical importance that there is investment to find solutions to
slow down the cellular degeneration and find treatments that prevent vision loss in patients.

Recently, the first two therapies targeting GA secondary to AMD, pegcetacoplan and
avacincaptad pegol, received regulatory approvals in the U.S. However, challenges persist
in the clinical trial landscape for GA. While the U.S. Food and Drug Administration (FDA)
approved pegcetacoplan, the European Medicines Agency (EMA) denied its marketing
authorization in Europe, citing a lack of clinically meaningful benefits for patients [8]. This
decision was primarily based on limited improvements observed in functional endpoints
during phase III clinical trials [7]. These developments underscore the urgent need to
re-evaluate clinical trial designs to facilitate the development and approval of therapies
that demonstrate significant and measurable improvements for patients.

3.1. Structural Clinical Endpoints and Monitoring of GA Using AI

Traditionally, fundus autofluorescence (FAF) is used for detecting and monitoring
GA, due to the high contrast visualization of lesions it provides. On FAF, lesions clearly
differentiate from non-atrophic retinal tissues as dark hypofluorescent areas, caused by an
absence of fluorophores in areas of RPE loss [54]. As a result, GA growth rate, as measured
on FAF, is often used as a primary outcome measure in clinical trials. Despite the sharply
demarcated areas, manual segmentation on FAF is often a time-consuming procedure. The
RegionFinder software (Version 1.5.0, Heidelberg Engineering) provides a semiautomated
segmentation method for GA area measurement on FAF, which is available to any clinic
using Heidelberg Engineering FAF devices [55]. While the software allows for a more robust
documentation of GA growth, it is important to note that this tool still requires manual
input to adjust the delineations, still costing clinicians time and allowing for inter-observer
variability. Various groups have proposed new AI methodologies that fully automate the
segmentation on FAF and may soon be implemented for the more accurate assessment of
GA in clinical trials [56–58].

However, it is important to note that as a progressive disease, GA not only affects
the RPE, but also causes degeneration of the neurosensory layers, such as the photorecep-
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tors [59]. Changes in these layers are not visualized in FAF images, but can be visualized
using high-resolution three-dimensional images provided by OCT [60]. Today, OCT has
become the gold standard for GA management. As OCT images provide pixel-level resolu-
tion of the individual neurosensory layers, GA appears as the loss of the RPE and overlying
photoreceptor layer, resulting in areas of hypertransmission into the choroid [61]. Various
approaches for the segmentation of GA lesions on OCT have been reported. Segmenta-
tion can be based on the en face OCT slabs [62], the RPE layer [63], photoreceptors [64],
biomarkers associated with GA, such as hyper transmission [65], or a combination of
features [66–68] to detect and quantify GA.

Clinical validation studies using such proposed AI algorithms are imperative prior
to their use in clinical trials. A comprehensive evaluation of automated OCT monitoring
of GA in comparison to the traditional FAF-based measurements used for clinical trial
endpoints was performed as a post hoc analysis of the phase III OAKS and DERBY trials for
pegcetacoplan by Mai et al. [69]. This study compared the area of photoreceptor loss and
RPE loss on OCT, quantified using two previously validated algorithms [63,64,70], to assess
reading-center manual FAF gradings. The study demonstrated that both cross-sectional and
longitudinal assessments of GA progression showed a high correlation between manual
FAF and automated OCT-based RPE measurements, highlighting the utility of automated
OCT measurements as potential clinical endpoints. Similar results were reported by an
independent group that investigated correlations of FAF measurements with automated
GA segmentation on en face OCT images [71]. However, measurements of photoreceptor
loss did not show a strong correlation with FAF-based GA measurements, highlighting that
this may be a subclinical marker that is only achievable using AI-based OCT analysis [69].
The performance of the two algorithms for photoreceptor and RPE loss quantification
compared to manually-performed human expert gradings was analyzed in two clinical
validation studies [70,72].

The phase II and phase III clinical trials for the complement C3 inhibitor pegcetacoplan
generated a large, high-quality multi-modal dataset and are thus an optimal source for post
hoc analysis using novel AI algorithms [7,73]. These post hoc analyses shed light onto what
may soon become standard clinical endpoint measurements and monitoring strategies for
future clinical trials. A key finding, substantiated by work from various groups, is that
the treatment effect of pegcetacoplan is more pronounced on the level of photoreceptor
layer maintenance compared to the RPE, providing insight into the biological pathway
and the effect of complement inhibition [72,74–76]. A topographic analysis by Riedl et al.
used AI algorithms to generate topographic maps, presenting evidence that photoreceptor
degeneration precedes RPE loss, contradicting the previous theory of photoreceptor loss
as a result of RPE dysfunction [72]. This was also shown by Pfau et al. using a fully
automated DL segmentation pipeline [14]. In particular, these analyses utilize automated
segmentation of the EZ, a hyper-reflective band in the OCT corresponding to the ellipsoid
of inner segments of photoreceptors [77]. As the inner segment ellipsoid is packed with
mitochondria, the EZ as seen on OCT has become an important marker of photoreceptor
health and function [78]. The post hoc analysis by Schmidt-Erfurth et al. of the OAKS
and DERBY trials showed that the therapeutic impact on the EZ layer was notably more
pronounced, with reductions of 53% and 46% in OAKS and 47% and 46% in DERBY for per
month (PM) treatment and per every other month (PEOM), respectively, compared with
sham at 24 months. In comparison, the reduction in RPE loss growth was shown to be 22%
and 20% in OAKS and 27% and 21% in DERBY for PM and PEOM, respectively, at the same
time point [76]. Also, Fu et al. reported a protective effect on both photoreceptors and RPE
in their post hoc analysis of the OAKS and DERBY data, with the effect being more easily
observed at the level of the photoreceptors [74]. Additionally, it is important to mention that



Pharmaceuticals 2025, 18, 284 9 of 20

EZ measurements have shown to be strongly associated with functional measures [79,80],
making this a promising clinical endpoint that should also reflect functional changes.

These analyses, only possible through precise AI-based quantifications, call for a
rethinking of GA clinical trial design. This has recently been underlined by the acknowl-
edgment of EZ loss as an outcome measurement in GA trials by the FDA. The phase II
ReCLAIM-2 trial for elamipretide is the first prospective clinical trial to use measurements
of EZ integrity as a clinical endpoint [81]. For the clinical study, EZ integrity was mea-
sured in a semi-automatic manner using a method previously described by Itoh et al. [82].
While elamipretide statistically did not meet the primary endpoints of mean change in
low-luminance visual acuity (LLVA) and square root converted GA area on OCT, the ther-
apy induced a 43% reduction in the mean progression from baseline in the percentage of
total EZ attenuation and 47% reduction in the mean progression of percentage of partial
EZ attenuation versus placebo at week 48. These results further highlight the higher sensi-
tivity of measurements at the level of the photoreceptors to the progressive pathological
changes associated with vision loss. The results also indicate that, as previously hypothe-
sized, elamipretide supports photoreceptor preservation. Representative example cases
are shown in Figure 2. As a result, measurements of EZ attenuation will serve as primary
endpoint for the subsequent phase III studies [81].
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Figure 2. Representative EZ integrity maps from the ReCLAIM-2 trial evaluating elamipretide.
Maps were chosen based on matching degrees of total EZ attenuation at baseline. These examples
demonstrate increased EZ loss area growth in the placebo group compared to the treated group
between baseline and week 48. Pink represents total EZ attenuation and blue represents partial EZ
attenuation. Reproduced with permission from Ehlers et al., Ophthalmology Science; published by
Elsevier, 2024 [81]. EZ = ellipsoid zone.
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These developments suggest the need for standardized regulatory-approved AI plat-
forms that can be made available in clinics and retina practices worldwide. The GA Monitor
(RetInSight, Vienna, Austria) consists of a composite algorithm that is able to segment and
measure RPE and EZ loss and thickness, providing topographical maps that can be used for
effective real-time decision-making. The tool has recently received MDR approval in Europe
and has been approved for investigational use in the U.S. [83]. Extensively validated through
post hoc studies [70,76,84], its real-time application in clinical trials is yet to be analyzed.

3.2. Improved Functional Endpoints in Geographic Atrophy Using AI

While structural imaging techniques like OCT provide valuable insights into anatom-
ical changes in GA, functional outcome parameters are critical to assess the real-world
impact of disease and to evaluate therapeutic efficacy. As mentioned earlier, the EMA’s
decision to deny marketing authorization for pegcetacoplan in Europe emphasized the
critical need for functional evidence in evaluating treatments’ impact on patients’ quality
of life [8]. The data provided to the EMA suggested no statistically significant superiority
in BCVA at 24 months in the intervention group [7].

The work of Pondorfer et al. explored the ability of various functional tests to dif-
ferentiate between different stages of AMD, providing insights into their potential utility
for generating meaningful data to support regulatory approval of emerging therapies.
Their findings revealed that BCVA alone is insufficient to distinguish between early and
intermediate stages of GA, as it remains relatively preserved until the disease involves the
subfoveal region [85]. Sunness et al. presented data as early as 1997, showing varying visual
impairments in patients with BCVA > 20/50, undetected by common visual testing [86].
More suitable functional tests include contrast sensitivity or LLVA, as contrast sensitivity is
reduced early in GA patients due to impaired rod function and progressive photoreceptor
degeneration, and reading speed due to its relevance to daily activities [87,88]. However,
these functional parameters are also predominantly centered on foveal vision, which limits
their ability to comprehensively evaluate GA. A significant proportion of patients show a
parafoveal onset, sparing the fovea until late disease stages [89]. Consequently, measures
focused solely on central retinal vision may fail to capture extrafoveal progression, scotoma
formation, and the resultant quality of life impacts for patients. Extrafoveal GA progression
commonly impairs the ability to read or recognize faces due to paracentral scotoma [59].

Microperimetry (MP) has emerged as a critical tool for addressing the limitations of
conventional visual function tests. By mapping retinal sensitivity across the entire macula
with precise fundus tracking, MP is able to detect localized changes in function and pro-
vides a more nuanced view of disease progression [90]. Several studies have conducted
post hoc analyses, correlating structural imaging characteristics with functional MP mea-
surements, using AI to superimpose the MP test points onto other imaging modalities, such
as OCT [17,91]. Further, MP has enhanced our understanding of how and which structural
pathologies lead to functional deficits. Using existing clinical datasets, Seeböck et al. have
developed deep learning algorithms that are able to automatically predict a comprehensive
retinal sensitivity map from an OCT volume [92].

Despite its advantages, standard MP patterns face limitations when applied to patients
with advanced GA. Extensive scotomas often result in information loss of a significant
number of test points, reducing the test’s overall informativeness. Additionally, areas
of emerging atrophy may remain undetected if not actively targeted. Recent studies
aim to advance MP technology through objective AI-based customizable test patterns,
identifying areas at high risk for functional deficits, e.g., adjacent to atrophy or with
thinned photoreceptors [93,94]. An example of an AI-generated patient tailored MP pattern
is shown in Figure 3. By focusing on regions of residual function or areas at high risk of
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progression, MP now offers more precise and clinically relevant data. Studies by Wu et al.
demonstrated how these algorithms improve both the reliability and predictive power of
MP in assessing GA [16,95]. Further, automated targeted approaches enable a significant
reduction in sample sizes for clinical trials due to decreased variance in retinal sensitivity.

Research by Wu et al., as well as Meleth et al., demonstrated that MP is capable of detect-
ing subclinical functional impairments in retinal regions adjacent to RPE loss before structural
changes become apparent on OCT [95–97]. AI-assisted post hoc analyses enable the correlation
of reduced sensitivity with disruptions in the EZ and thinning of the RPE, thus bridging the
gap between functional and structural assessments [14]. These findings underscore MP’s
ability to provide actionable insights into disease mechanisms and therapeutic effects.
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Figure 3. Example of an AI generated patient-tailored MP pattern shown by Pfau et al. (2021) [98].
Structural information from multimodal imaging data (1) is used to customize patterns. MP points
are automatically placed on isohels surrounding the RPE loss border (2 and 3). The new pattern is
projected onto the MP and subsequently tested (4). The different MP modalities, namely mesopic
and dark-adapted cyan (5) are analyzed and compared to controls. Reproduced with permission
from Pfau et al., Progress in Retinal and Eye Research; published by Elsevier, 2021 [98]. AI = artificial
intelligence, MP = microperimetry, and RPE = retinal pigment epithelium.

AI plays a transformative role in bridging the gap between structural imaging and
functional assessments. By leveraging advanced ML algorithms, AI facilitates the inte-
gration of multimodal imaging data (e.g., OCT, FAF) with functional metrics such as MP,
enabling more robust correlations. AI-assisted MP offers adaptive and personalized test
patterns, targeting regions at high risk of functional decline, such as areas adjacent to GA
lesions or those showing thinning of the EZ. This targeted approach enhances sensitivity in
detecting subclinical changes, often preceding visible structural degeneration. For example,
studies using AI to segment and quantify EZ integrity have shown strong correlations
with visual outcomes and reading speed, directly linking photoreceptor preservation to
patient-centric measures [80,99]. AI also improves the efficiency of functional assessments
by automating large-scale data analysis and reducing interobserver variability. In GA trials,
AI has been employed to analyze changes in retinal sensitivity across treatment and control
groups, revealing significant functional preservation in targeted retinal regions. These
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insights reinforce the importance of combining structural and functional outcomes as dual
endpoints for regulatory approval and real-world applications.

Functional endpoints are increasingly recognized as critical components of regulatory
approval processes for GA therapies [100]. By enabling the AI-based detection of localized
functional deficits and correlating these changes with structural biomarkers, MP provides a
holistic understanding of disease progression and therapeutic impact. As the field advances,
the integration of AI into clinical trial designs and regulatory frameworks will be instru-
mental in developing effective treatments for GA and getting regulatory approval. The
adoption of targeted MP approaches, which focus on areas most susceptible to functional
decline, promises to further refine these assessments and improve patient outcomes.

3.3. Leveraging AI for Patient Recruitment to Enhance GA Treatment Outcomes

Developing new drugs and bringing them to the market may be time-consuming and
expensive as significant resources are dedicated to proving the safety and efficacy of novel
treatments. A challenge in optimal trial design often lies in the recruitment of participants,
where finding the eligible patients can cost time and money. Beyond monitoring GA lesion
growth, methods to predict GA progression may be imperative for patient motivation, as
well as for informed decision-making when it comes to patient inclusion. This is especially
important in a slow-progressing, heterogenous disease such as GA, where progression patterns
vary greatly between individuals. Also, for prognostic purposes, AI-based measurements
of neurosensory layer thinning have shown to be of high value. In particular, it is the ratio
between EZ loss and RPE loss that has been demonstrated to be highly predictive of GA
progression rates [72,76]. This is also true in the context of treatment effects, whereby patients
with a healthy photoreceptor layer, in other words a lower EZ to RPE loss ratio at baseline,
are expected to see higher treatment benefits [76]. Stratifying patients by this personalized
quantification of disease activity, rather than a population-based threshold, would allow for
timely treatment decisions and improved patient outcomes.

Not only can AI tools be used for identifying ‘high-risk’ patients based on imaging
features, AI-driven strategies may also aid in streamlining patient recruitment processes in
clinical trials for GA by assessing large amounts of routine retinal images. By leveraging
machine learning models, prescreening procedures can be automated, identifying eligible
participants more rapidly and accurately [101]. This capability may not only alleviate
recruitment challenges but may also ensure that diverse populations are represented in
trials, thereby enhancing the generalizability of findings.

Various ML models to detect and classify GA have been reported on [102–105], but
their value for specifically clinical trial recruitment remains understudied. A study con-
ducted by researchers from Moorfields Eye Hospital and University College London
demonstrated how AI provides an opportunity for automated prescreening for GA clinical
trials [15]. The AI system evaluated TopCon OCT scans from 78,917 patients from a diverse
population. The two-step approach features the segmentation of anatomic features and
the use of a deep classification network to output probabilities for macular pathologies,
including neovascularization, GA, and drusen. Patients had to have the right area and
location of GA, as well as an absence of neovascularization to be counted as eligible. The
study showcases the AI-based approach by using relevant inclusion criteria from the phase
II HORIZON clinical study to shortlist patients. Analyses were then expanded to three
addition trials including the phase III DERBY study of pegcetacoplan and the phase II
GATHER2 study of avacincaptad pegol. The AI system successfully identified nearly
twice as many eligible patients as the conventional screening method based on electronic
health records. Differently to the conventional health record search, the AI system did not
underrepresent certain ethnicities in patient selection [15].
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4. Limitations of AI Integration for AMD Clinical Trials
The integration of AI into clinical trials for AMD still comes with several challenges

and limitations. A major challenge lies in the quality and representativeness of the datasets
used to train AI models. It must be remembered that the quality and accuracy of all ML-
based tools depends on the quality of the training data. This makes ensuring training data
represents diverse populations and is annotated in a standardized manner a pivotal issue.
Many studies to date have relied on relatively small datasets, which raises concerns about
the generalizability of findings to broader populations [106]. In addition, in the context
of OCT based AI tools, a challenge lies in the development of cross-device algorithms.
Most algorithms to date are specific to the device they are trained on (i.e., SPECTRALIS,
Heidelberg Engineering). As such, clinics that are using different OCT devices may not
benefit from the tools available.

Furthermore, the integration of AI technologies in clinical trials necessitates a robust
governance framework to ensure the ethical use of AI while addressing potential biases in
algorithmic decision-making. Ongoing research emphasizes the importance of inclusivity
in data collection and the need for continuous training of healthcare providers in AI
technologies to mitigate the risks associated with bias and inequity [107,108]. Additionally,
respecting patient autonomy is a fundamental ethical principle in healthcare. This involves
maintaining transparency in AI interactions and ensuring that patients are fully informed
about the use of AI in clinical trials. Clear communication about how AI technologies will
be applied in their treatment can enhance patient engagement and consent, aligning AI
usage with ethical standards [109].

It is crucial for healthcare professionals to recognize the limitations of AI, even when
using systems that have undergone extensive validation and received regulatory approval.
The algorithms discussed within the scope of this review were designed and trained to
perform previously defined tasks and may thus be insensitive to anomalies or outliers that
may affect a patients disease progression and quality of life. Consequently, relying solely on
AI could lead to missed pathological changes, resulting in false negatives or false positives
that may significantly impact treatment decisions and patient outcomes. Therefore, AI
should not be blindly trusted or seen as a replacement for clinical judgment; rather, it
should be used as a supportive tool to aid, but not replace, the expertise of clinicians.

Future efforts need to focus on assessing the robustness of these AI systems in real-
world scenarios, ensuring that they perform effectively across various imaging conditions and
demographic groups. As the use of AI in clinical trials expands, it is essential to address ethical
considerations and promote equitable access to these technologies. Inclusive data collection
practices and regular equity audits of AI systems are vital for ensuring that underrepresented
populations are adequately considered in research and treatment decisions. Developing
ethical frameworks and maintaining transparency in AI operations will be crucial for fostering
trust among stakeholders, including patients and healthcare providers.

5. Conclusions
This review underscores the transformative potential of AI in enhancing clinical out-

comes for AMD. The application of AI-driven methods has demonstrated significant progress
in automating biomarker analysis and standardizing evaluations, which are pivotal for large-
scale clinical trials. For nAMD, AI-based segmentation of fluid compartments and dynamic
disease monitoring have improved our understanding of disease activity and treatment re-
sponse, facilitating more precise and personalized therapeutic strategies. Similarly, in GA, the
deployment of AI has offered insights into the pathophysiology of disease progression and
treatment efficacy. Emerging endpoints, such as EZ integrity and MP metrics, further illustrate
the ability of AI to link structural and functional outcomes, promoting a multidimensional
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approach to disease assessment. The integration of AI in clinical trials may also optimize
patient stratification, recruitment, and adaptive trial designs, ensuring that diverse popu-
lations are included and therapeutic benefits are maximized. However, challenges remain,
particularly in ensuring the generalizability of AI models across diverse datasets, developing
cross-device compatibility, and addressing ethical concerns, including bias and transparency
in AI decision-making processes. Future research should prioritize the real-world validation
of AI tools and the development of standardized regulatory frameworks to allow for the full
integration of AI systems in clinical trial designs.
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